Preview

Translational Medicine

Advanced search

Preparation of liposomes with an encapsulat ed cardioprotector, study of physicochemical properties, release kinetics and biodistribution in vivo

https://doi.org/10.18705/2311-4495-2025-12-3-256-267

EDN: OSPQRW

Abstract

Background. Liposomal drug delivery systems are increasingly used in clinical practice due to their ability to improve the pharmacokinetic profile and reduce the systemic toxicity of drugs. Quinacrine is a promising drug with proven cardioprotective and antiviral activity, however, its use is limited by side effects. The development of a liposomal form of quinacrine (QLPS) can overcome these limitations and increase the efficiency of targeted delivery. Objective. To study the physicochemical properties of synthesized liposomal quinacrine with different concentrations of phospholipids, the kinetics of the release of the active substance and biodistribution in vivo. Design and method. Commercially available reagents were used: phospholipids, cholesterol, vitamin E. The physicochemical characteristics of liposomes (hydrodynamic diameter, polydispersity, zeta potential) were stud ied using the coordination light scattering method. The morphology of liposomes was studied using transmission electron microscopy. The biodistribution study was carried out on laboratory mice using in vivo fluorescence imaging. Results. In the course of the work, the physicochemical characteristics of liposomes were studied, two samples with different concentrations of phospholipids were compared, their release profile and biodistribution were described. Conclusion. The developed liposomal quinacrine has optimal physicochemical characteristics. The obtained data on the active substance release profiles and the features of biodistribution in vivo are the basis for the further development of effective and safe drugs on this platform.

About the Authors

G. A. Shulmeyster
Almazov National Medical Research Centre
Russian Federation

Galina A. Shulmeyster, Junior Research Assistant of the 
Research Laboratory of Nanotechnologies

Saint Petersburg


Competing Interests:

The authors declare no conflict of interest



M. S. Istomina
Almazov National Medical Research Centre; Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Maria S. Istomina, Junior Research Assistant of the Research Laboratory of Nanotechnologies

Saint Petersburg


Competing Interests:

The authors declare no conflict of interest



D. V. Korolev
Almazov National Medical Research Centre; Academician I. P. Pavlov First Saint Petersburg State University
Russian Federation

Dmitry V. Korolev, PhD, Head of the Research Laboratory of Nanotechnologies, Almazov National Medical Research Centre; Researcher of the Academician I. P. Pavlov First Saint Petersburg State Medical University

Parchomenko ave., 15 B, Saint Petersburg, 194156


Competing Interests:

The authors declare no conflict of interest



I. V. Murin
Saint Petersburg State University, Institute of Chemistry
Russian Federation

Igor V. Murin, PhD, Head of the Solid State Chemistry Department of Institute of chemistry

Saint Petersburg


Competing Interests:

The authors declare no conflict of interest



References

1. Kumar A, Chen F, Mozhi A, et al. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale. 2013;5:8307 8325. DOI:10.1039/c3nr01525d.

2. Allen TM, Cullis PR. Drug Delivery Systems: Entering the Mainstream. Science. 2004;303(5665):1818 1822. DOI:10.1126/science.1095833.

3. Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 1994;15(7):215–220. DOI:10.1016/0165-6147(94)90314-x.

4. Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Semin. Onc. 2004;31(13):5–15. DOI:10.1053/j.seminoncol.2004.08.001.

5. Balzus B, Sahle FF, Hönzke S, et al. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. European J. Pharm. Biopharm. 2017;115:122–130. DOI:10.1016/j.ejpb.2017.02.001.

6. Rose PG. Pegylated Liposomal Doxorubicin: Optimizing the Dosing Schedule in Ovarian Cancer. Oncologist. 2005;10(3):205–214. DOI:10.1634/theoncologist.10-3-205.

7. Thigpen JT, Aghajanian CA, Alberts DS, et al. Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecol Oncol. 2005;96(1):10–18. DOI: 10.1016/j.ygyno.2004.09.046.

8. Katsogiannis I, Fikioris N, Kontogiorgis C, et al. Evaluation of liposomal B12 supplementation in a case series study. Glob Drugs Therap. 2018;3:1–4. DOI:10.15761/GDT.1000160.

9. Davis JL, Paris HL, Beals JW, et al. Liposomal encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect against Ischemia Reperfusion Injury. Nutr Metab Insights. 2016;9:25–30. DOI:10.4137/NMI.S39764.

10. Brilli E, Khadge S, Fabiano A, et al. Magnesium bioavailability after administration of sucrosomial® magnesium: results of an ex-vivo study and a comparative, double-blinded, cross-over study in healthy subjects. Eur Rev Med Pharmacol Sci. 2018;22(6):1843–1851. DOI:10.26355/eurrev_201803_14605.

11. Tsujioka T, Sasaki D, Takeda A, et al. Resveratrol Encapsulated Mitochondria-Targeting Liposome Enhances Mitochondrial Respiratory in Myocardial Cells. Int J Mol Sci. 2022;23(1):112. DOI:10.3390/ijms23010112.

12. Agrawal YO, Husain M, Patil KD, et al. Verapamil hydrochloride loaded solid lipid nanoparticles: Preparation, optimization, characterization, and assessment of cardioprotective effect in experimental model of myocardial infarcted rats. Biomed Pharmacother. 2022;154:113429. DOI:10.1016/j.biopha.2022.113429.

13. Taggart JV, Earle DP, Berliner RW, et al. Studies on the chemotherapy of the human malarias. V. The antimalarial activity of quinacrine. J Clin Invest. 1948;27(3 Pt 2):93–97. DOI:10.1172/JCI101979.

14. Otani H, Engelman RM, Breyer RH, et al. Mepa crine, a phospholipase inhibitor. A potential tool for mod ifying myocardial reperfusion injury. J Thorac Cardiovasc Surg. 1986;92(2):247–254. PubMed PMID: 3736082.

15. van Bilsen M, van der Vusse GJ, Willemsen PH, et al. Effects of nicotinic acid and mepacrine on fatty acid accumulation and myocardial damage during ischemia and reperfusion. J Mol Cell Cardiol. 1990;22(2):155–163. DOI:10.1016/0022-2828(90)91112-k.

16. Pineda B, Pérez de la Cruz V, Hernández Pando R, et al. Quinacrine as a potential treatment for COVID-19 virus infection. Eur Rev Med Pharmacol Sci. 2021;25(1):556 566. DOI:10.26355/eurrev_202101_24428.

17. Pineda B. Quinacrine, an Old Drug with Potentially usefull in the Treatment for COVID-19. Arch Med Res. 2021;52(8):858–859. DOI:10.1016/j.arcmed.2021.06.002.

18. Eberle RJ, Olivier DS, Amaral MS, et al. The Re purposed Drugs Suramin and Quinacrine Cooperatively In hibit SARS-CoV-2 3CLpro In Vitro. Viruses. 2021;13(5):873. DOI:10.3390/v13050873.

19. Salas Rojas M, Silva Garcia R, Bini E, et al. Quinacrine, an Antimalarial Drug with Strong Activity Inhibiting SARS-CoV-2 Viral Replication In Vitro. Viruses. 2021;13(1):121. DOI:10.3390/v13010121.

20. Puhl AC, Fritch EJ, Lane TR, et al. Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms. ACS Omega. 2021;6(11):7454 7468. DOI:10.1021/acsomega.0c05996.

21. Sonin DL, Pochkaeva EI, Papayan GV, et al. Cardio- and vasoprotective effect of quinacrine on a model of ischemic-reperfusion injury of the myocardium in rats in vivo. Byulleten` e`ksperimental`noj biologii i mediciny=Bulletin of Experimental Biology and Medicine. 2024;2(177):152–159. In Russian.

22. Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–391. DOI:10.3109/216-91401.2014.953633.

23. Nsairat H, Khater D, Sayed U, et al. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. DOI:10.1016/j.heliyon.2022.e09394.

24. Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radic Biol Med. 2021;176:1–15. DOI:10.1016/j.freeradbiomed.2021.09.001.

25. Amstad E, Kohlbrecher J, Müller E, et al. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Lett. 2011;11(4):1664–1670. DOI:10.1021/nl2001499.

26. Mozafari MR, Khosravi-Darani K, Borazan GG, et al. Encapsulation of Food Ingredients Using Nanoliposome Technology. International Journal of Food Properties. 2008;11(4):833–844. DOI:10.1080/10942910701648115

27. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, et al. Preparation, Characterization and Applications of Liposomes: State of the Art. Journal of Colloid Science and Biotechnology. 2012;1(2):147–168. DOI:10.1166/jcsb.2012.1020.

28. Monnier CA, Burnand D, Rothen-Rutishauser B, et al. Magnetoliposomes: opportunities and challenges. European Journal of Nanomedicine. 2014;6(4):201–215. DOI:10.1515/ejnm-2014-0042.

29. Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231 242. DOI:10.1007/s13346-015-0220-8.

30. Demel RA, De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976;457(2):109–132. DOI:10.1016/0304-4157(76)90008-3.


Review

For citations:


Shulmeyster G.A., Istomina M.S., Korolev D.V., Murin I.V. Preparation of liposomes with an encapsulat ed cardioprotector, study of physicochemical properties, release kinetics and biodistribution in vivo. Translational Medicine. 2025;12(3):256-267. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-3-256-267. EDN: OSPQRW

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)