Modern view on the treatment of oncological diseases by endovascular methods
https://doi.org/10.18705/2311-4495-2022-9-4-33-40
Abstract
In recent decades, the multidisciplinary development of medicine has led to an improved understanding of the molecular mechanisms of the development of oncological diseases. The idea of malignant neoplasms as heterogeneous objects containing cells with different genetic backgrounds made it possible to explain the selective effectiveness of one type of treatment for a certain part of the tumor cells in a patient. Numerous targeted therapies have formed the cornerstone in the treatment of various malignancies, alone or in combination with other treatments such as chemotherapy, radiation therapy, surgery and interventional radiology.
Interventional oncology covers both diagnostics and treatment. Its methods are minimally invasive and highly specific to the patient. Currently, personalized procedures are actively develop and allow to detect cancer cells, selectively contact and treat them. Another important problems is to evaluate drug delivery and uptake in order to make adjustments to the treatment based on the received data from the procedures and, ultimately, to predict the response. Here we will consider such interventional oncological procedures and innovative methods that are under development as transarterial chemoembolization (TACE), oily transarterial chemoembolization (cTACE), catheter intra-arterial delivery of nanoparticles etc. Thus, interventional oncology has unique opportunities for selective impact on tumor lesions not only for diagnostic purposes, but also for a wide range of minimally invasive percutaneous treatments.
About the Authors
A. V. GorbatykhRussian Federation
Artem V. Gorbatykh, MD, PhD, head of Interventional Surgery Research Laboratory, interventional cardiologist
Akkuratova str., 2, Saint Petersburg, 197341
O. E. Latkin
Russian Federation
Oleg E. Latkin, resident of Cardiovascular surgery
Saint Petersburg
A. A. Prokhorikhin
Russian Federation
Aleksei A. Prokhorikhin, MD, PhD, interventional cardiologist
Saint Petersburg
D. D. Zubarev
Russian Federation
Dmitrii D. Zubarev, MD, PhD, head of interventional cardiology department
Saint Petersburg
M. A. Chernyavsky
Russian Federation
Mikhail A. Chernyavsky, MD, head of Research Department for Vascular and Interventional Surgery, cardiovasular surgeon
Saint Petersburg
References
1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–674. DOI: 10.1016/j.cell.2011.02.013.
2. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018; 15(2):81–94. DOI: 10.1038/nrclinonc.2017.166.
3. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014; 54(5):716–727. DOI: 10.1016/j.molcel.2014.05.015.
4. Sawyers C. Targeted cancer therapy. Nature. 2004;432(7015):294–297. DOI: 10.1038/nature03095.
5. Adam A, Kenny LM. Interventional oncology in multidisciplinary cancer treatment in the 21(st) century. Nat Rev Clin Oncol. 2015; 12(2):105–113. DOI: 10.1038/nrclinonc.2014.211.
6. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018; 69(1):182–236. DOI: 10.1016/j.jhep.2018.03.019.
7. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018; 68(2):723– 750. DOI: 10.1002/hep.29913.
8. Mahnken AH, Pereira PL, de Baère T. Interventional oncologic approaches to liver metastases. Radiology. 2013; 266(2):407–430. DOI: 10.1148/radiol.12112544.
9. Duran R, Chapiro J, Schernthaner RE, et al. Systematic review of catheter-based intra-arterial therapies in hepatocellular carcinoma: state of the art and future directions. Br J Radiol. 2015; 88(1052):20140564. DOI: 10.1259/bjr.20140564.
10. Lencioni R, de Baere T, Soulen MC, et al. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology. 2016; 64(1):106–116. DOI: 10.1002/hep.28453.
11. Trédan O, Galmarini CM, Patel K, et al. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007; 99(19):1441–1454. DOI: 10.1093/jnci/djm135.
12. Idée JM, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013; 88(3):530–549. DOI: 10.1016/j.critrevonc.2013.07.003.
13. Deschamps F, Farouil G, Gonzalez W, et al. Stabilization Improves Theranostic Properties of Lipiodol®-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model. Cardiovasc Intervent Radiol. 2017; 40(6):907–913. DOI: 10.1007/s00270-017-1616-2.
14. Deschamps F, Harris KR, Moine L, et al. PickeringEmulsion for Liver Trans-Arterial Chemo-Embolization with Oxaliplatin. Cardiovasc Intervent Radiol. 2018; 41(5):781–788. DOI: 10.1007/s00270-018-1899-y.
15. Fuchs K, Duran R, Denys A, et al. Drug-eluting embolic microspheres for local drug delivery — State of the art. J Control Release. 2017; 262:127–138. DOI: 10.1016/j.jconrel.2017.07.016.
16. Brown KT, Do RK, Gonen M, et al. Randomized Trial of Hepatic Artery Embolization for Hepatocellular Carcinoma Using Doxorubicin-Eluting Microspheres Compared With Embolization With Microspheres Alone. J Clin Oncol. 2016; 34(17):2046–2053. DOI: 10.1200/JCO.2015.64.0821.
17. Caine M, Zhang X, Hill M, et al. Comparison of microsphere penetration with LC Bead LUMI™ versus other commercial microspheres. J Mech Behav Biomed Mater. 2018; 78:46–55. DOI: 10.1016/j.jmbbm.2017.10.034.
18. Tian M, Lu W, Zhang R, et al. Tumor uptake of hollow gold nanospheres after intravenous and intra-arterial injection: PET/CT study in a rabbit VX2 liver cancer model. Mol Imaging Biol. 2013; 15(5):614–624. DOI: 10.1007/s11307-013-0635-x.
19. Lee IJ, Ahn CH, Cha EJ, et al. Improved drug targeting to liver tumors after intra-arterial delivery using superparamagnetic iron oxide and iodized oil: preclinical study in a rabbit model. Invest Radiol. 2013; 48(12):826– 833. DOI: 10.1097/RLI.0b013e31829c13ef.
20. Mouli SK, Tyler P, McDevitt JL, et al. Imageguided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors. ACS Nano. 2013; 7(9):7724–7733. DOI: 10.1021/nn4023119.
21. Jeon MJ, Gordon AC, Larson AC, et al. Transcatheter intra-arterial infusion of doxorubicin loaded porous magnetic nano-clusters with iodinated oil for the treatment of liver cancer. Biomaterials. 2016; 88:25–33. DOI: 10.1016/j.biomaterials.2016.02.021.
22. Liang Q, Wang YX, Ding JS, et al. Intra-arterial delivery of superparamagnetic iron-oxide nanoshell and polyvinyl alcohol based chemoembolization system for the treatment of liver tumor. Discov Med. 2017; 23(124):27–39.
23. Duran R, Mirpour S, Pekurovsky V, et al. Preclinical Benefit of Hypoxia-Activated Intra-arterial Therapy with Evofosfamide in Liver Cancer. Clin Cancer Res. 2017; 23(2):536–548. DOI: 10.1158/1078-0432.CCR-16-0725.
24. Salem R, Gordon AC, Mouli S, et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology. 2016; 151(6):1155–1163.e2. DOI: 10.1053/j.gastro.2016.08.029.
25. Theysohn JM, Ertle J, Müller S, et al. Hepatic volume changes after lobar selective internal radiation therapy (SIRT) of hepatocellular carcinoma. Clin Radiol. 2014; 69(2):172–178. DOI: 10.1016/j.crad.2013.09.009.
26. Pavel M, O’Toole D, Costa F, et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology. 2016; 103(2):172–85. DOI: 10.1159/000443167.
27. Sangro B, Iñarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol. 2012; 56(2):464–73. DOI: 10.1016/j.jhep.2011.07.012.
28. Van Der Gucht A, Jreige M, Denys A, et al. Resin Versus Glass Microspheres for 90Y Transarterial Radioembolization: Comparing Survival in Unresectable Hepatocellular Carcinoma Using Pretreatment Partition Model Dosimetry. J Nucl Med. 2017; 58(8):1334–1340. DOI: 10.2967/jnumed.116.184713.
29. Wagstaff PG, Buijs M, van den Bos W, et al. Irreversible electroporation: state of the art. Onco Targets Ther. 2016; 9:2437–2446. DOI: 10.2147/OTT.S88086.
30. Bhutiani N, Agle S, Li Y, et al. Irreversible electroporation enhances delivery of gemcitabine to pancreatic adenocarcinoma. J Surg Oncol. 2016;114(2):181– 186. DOI: 10.1002/jso.24288.
31. Srimathveeravalli G, Abdel-Atti D, Pérez-Medina C, et al. Reversible Electroporation-Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With 89Zr-Labeled Reporter Nanoparticles. Mol Imaging. 2018; 17:1536012117749726. DOI: 10.1177/1536012117749726.
32. Tempany CM, McDannold NJ, Hynynen K, et al. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011; 259(1):39–56. DOI: 10.1148/radiol.11100155.
33. Cheung TT, Fan ST, Chan SC, et al. Highintensity focused ultrasound ablation: an effective bridging therapy for hepatocellular carcinoma patients. World J Gastroenterol. 2013; 19(20):3083–3089. DOI: 10.3748/wjg. v19.i20.3083.
34. de Smet M, Heijman E, Langereis S, et al. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperaturesensitive liposomes: an in vivo proof-of-concept study. J Control Release. 2011; 150(1):102–110. DOI: 10.1016/j.jconrel.2010.10.036.
35. Parchur AK, Sharma G, Jagtap JM, et al. Vascular Interventional Radiology-Guided Photothermal Therapy of Colorectal Cancer Liver Metastasis with Theranostic Gold Nanorods. ACS Nano. 2018; 12(7):6597–6611. DOI: 10.1021/acsnano.8b01424.
36. Li J, Zhou M, Liu F, et al. Hepatocellular Carcinoma: Intra-arterial Delivery of Doxorubicin-loaded Hollow Gold Nanospheres for Photothermal AblationChemoembolization Therapy in Rats. Radiology. 2016; 281(2):427–435. DOI: 10.1148/radiol.2016152510.
37. Duran R, Namur J, Pascale F, et al. Vandetanibeluting Radiopaque Beads: Pharmacokinetics, Safety, and Efficacy in a Rabbit Model of Liver Cancer. Radiology. 2019; 293(3):695–703. DOI: 10.1148/radiol.2019190305.
38. Bize P, Duran R, Fuchs K, et al. Antitumoral Effect of Sunitinib-eluting Beads in the Rabbit VX2 Tumor Model. Radiology. 2016; 280(2):425–435. DOI: 10.1148/radiol.2016150361.
39. Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today. 2012; 17(17-18):928–934. DOI: 10.1016/j.drudis.2012.03.010.
Review
For citations:
Gorbatykh A.V., Latkin O.E., Prokhorikhin A.A., Zubarev D.D., Chernyavsky M.A. Modern view on the treatment of oncological diseases by endovascular methods. Translational Medicine. 2022;9(4):33-40. (In Russ.) https://doi.org/10.18705/2311-4495-2022-9-4-33-40