Influence of the Trendelenburg position and carboxyperitoneum on cerebral tissue oximetry values
https://doi.org/10.18705/2311-4495-2022-9-2-59-69
Abstract
Background. Cerebral tissue oximetry (rSO2) can be used to assess cerebral circulation. Cerebral tissue oximetry studies have been performed in the Trendelenburg position (30º), but data for 45 o are not available.
Objective. To study the effect of the Trendelenburg position (45°) under carboxyperitoneum conditions on rSO2 and hemodynamic parameters.
Design and methods. A single-center, prospective, descriptive study was conducted among patients (n = 30) who underwent robot-assisted laparoscopic prostatectomy. We measured rSO2 on the left and right, central venous pressure (CVP), mean arterial pressure (MAP), venous saturation at points: T1 — after induction of anesthesia and start of measurements; T2 — 5 minutes after positioning the patient in the Trendelenburg position of 45o; T3 — 15 minutes; T4 — 30 minutes; T5 — after returning to a horizontal position. Cerebral perfusion was assessed using cerebral perfusion pressure (CPP).
Results. rSO2 on the right and left at points T2, T3 and T5 significantly exceeded T1. There was a significant increase in BP mean at T2 and T3, as well as a significant increase in CVP at T2, T3 and T4 compared to T1. The CPP significantly decreased compared to T1 at points T3, T4 and T5.
Conclusions. The Trendelenburg position with a tilt angle of 45º in combination with carboxyperitoneum is accompanied by an increase in rSO2, blood pressure and CVP.
About the Authors
A. K. KolotukhinRussian Federation
Anton K. Kolotukhin, MD, physician anesthesiologist
Akkuratova str., 2, Saint Petersburg, 197341
Competing Interests:
The authors declare no conflict of interest.
A. Yu. Bakanov
Russian Federation
Artem Yu. Bakanov, MD, Ph.D., assistant professor of the Department of Anesthesiology and Intensive Care
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
A. E. Bautin
Russian Federation
Andrey E. Bautin, MD, Ph.D., professor, head of the Research Laboratory of Anesthesiology and Intensive Care
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
V. V. Volkov
Russian Federation
Vitaliy V. Volkov, MD, physician anesthesiologist
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
V. A. Mazurok
Russian Federation
Vadim A. Mazurok, MD, Ph.D., professor, chief of the Department of Anesthesiology and Intensive Care
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
O. V. Mazokhina
Russian Federation
Oksana V. Mazokhina, MD, chief of the Department of Anesthesiology and intensive care unit for 10 ORs
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
D. A. Shelipanov
Russian Federation
Denis A. Shelipanov, MD, Ph.D., chief of the Department of Urology
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
M. S. Mosoyan
Russian Federation
Mikhail S. Mosoyan, MD, DSc, professor, director of Robotic Surgery Centre
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
References
1. Unguryanu TN, Grjibovski AM. Brief recommendations on description, analysis and presentation of data in scientific papers. Human ecology. 2011; 18(5):56–60. In Russian.
2. Ali AM, Green D, Zayed H, et al. Cerebral monitoring in patients undergoing carotid endarterectomy using a triple assessment technique. Interact Cardiovasc Thorac Surg. 2011; 12(3):454–457. DOI: 10.1510/icvts.2010.235598.
3. Andersson L, Wallin CJ, Sollevi A, et al. Pneumoperitoneum in healthy humans does not affect central blood volume or cardiac output. Acta Anaesthesiol Scand. 1999; 43(8):809–814. DOI: 10.1034/j.1399-6576.1999.430805.x.
4. Ben-Haim M, Mandeli J, Friedman RL, et al. Mechanisms of systemic hypertension during acute elevation of intraabdominal pressure. J Surg Res. 2000; 91(2):101–105. DOI: 10.1006/jsre.2000.5903.
5. Chiu CC, Yeh SJ. Assessment of cerebral autoregulation using time-domain cross-correlation analysis. Comput Biol Med. 2001; 31(6):471–480. DOI: 10.1016/s0010-4825(01)00015-4.
6. Choi SH, Lee SJ, Rha KH, et al. The effect of pneumoperitoneum and Trendelenburg position on acute cerebral blood flow-carbon dioxide reactivity under sevoflurane anaesthesia. Anaesthesia. 2008; 63(12):1314–1318. DOI: 10.1111/j.1365-2044.2008.05636.x.
7. Doe A, Kumagai M, Tamura Y, et al. A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic-assisted laparoscopic prostatectomy. J Anesth. 2016; 30(6):949–955. DOI: 10.1007/s00540-016-2241-y.
8. Halverson A, Buchanan R, Jacobs L, et al. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc. 1998; 12(3):266–269. DOI: 10.1007/s004649900648.
9. Hänel F, Blobner M, Bogdanski R, et al. Effects of carbon dioxide pneumoperitoneum on cerebral hemodynamics in pigs. J Neurosurg Anesthesiol. 2001; 13(3):222–226. DOI: 10.1097/00008506-200107000-00007.
10. Jacq G, Gritti K, Carré C, et al. Modalities of Invasive Arterial Pressure Monitoring in Critically Ill Patients: A Prospective Observational Study. Medicine (Baltimore). 2015; 94(39):e1557. DOI: 10.1097/MD.0000000000001557.
11. Kalmar AF, Dewaele F, Foubert L, et al. Cerebral haemodynamic physiology during steep Trendelenburg position and CO(2) pneumoperitoneum. Br J Anaesth. 2012; 108(3):478–484. DOI: 10.1093/bja/aer448.
12. Kurazumi T, Ogawa Y, Yanagida R, et al. Dynamic Cerebral Autoregulation During the Combination of Mild Hypercapnia and Cephalad Fluid Shift. Aerosp Med Hum Perform. 2017; 88(9):819–826. DOI: 10.3357/AMHP.4870.2017.
13. Munis JR, Lozada LJ. Giraffes, siphons, and starling resistors. Cerebral perfusion pressure revisited. J Neurosurg Anesthesiol. 2000; 12(3):290–296. DOI: 10.1097/00008506-200007000-00029.
14. Park EY, Koo BN, Min KT, et al. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009; 53(7):895–899. DOI: 10.1111/j.1399-6576.2009.01991.x.
15. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990; 2(2):161–192.
16. Matsuoka T, Ishiyama T, Shintani N, et al. Changes of cerebral regional oxygen saturation during pneumoperitoneum and Trendelenburg position under propofol anesthesia: a prospective observational study. BMC Anesthesiol. 2019; 19(1):72. DOI: 10.1186/s12871-019-0736-4.
17. Tzeng YC, Ainslie PN. Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol. 2014; 114(3):545–559. DOI: 10.1007/s00421-013-2667-y.
18. Zhang R, Zuckerman JH, Giller CA, et al. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998; 274(1 Pt 2):H233–241. DOI: 10.1152/ajpheart.1998.274.1.h233.
19. Doyle DJ, Goyal A, Bansal P, et al. American Society of Anesthesiologists Classification. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.statpearls.com/ArticleLibrary/viewarticle/17453: (October 2021).
20. PAleontological STatistics. Version 4.09. https://www.nhm.uio.no/english/research/infrastructure/past/ (January 2022)
Review
For citations:
Kolotukhin A.K., Bakanov A.Yu., Bautin A.E., Volkov V.V., Mazurok V.A., Mazokhina O.V., Shelipanov D.A., Mosoyan M.S. Influence of the Trendelenburg position and carboxyperitoneum on cerebral tissue oximetry values. Translational Medicine. 2022;9(2):59-69. (In Russ.) https://doi.org/10.18705/2311-4495-2022-9-2-59-69