Structural reorganization of the white matter pathways of the brain in patients with spastic diplegia after translingual neurostimulation
https://doi.org/10.18705/2311-4495-2021-8-4-27-34
Abstract
Background. Spastic diplegia (Little’s disease) is the most common form of infantile cerebral palsy (ICP), leading to persistent motor and functional impairments. One promising area of rehabilitation is a combination of physical therapy with methods of stimulation of various parts of the nervous system, among which functional electrical stimulation of muscles and nerves is the most prominent.
Objective. To study structural changes of cerebral white matter conduction pathways in patients with spastic diplegia after translingual neurostimulation using magnetic resonance tractography.
Materials and Methods. An open single center-controlled study was conducted. A total of 18 children were examined. All patients underwent comprehensive MRI in two time points, before and after a course of translingual neurostimulation, on a tomograph with magnetic field induction 3.0 Tesla, which included a traditional protocol in 3 mutually perpendicular planes), and diffusion-weighted imaging — DWI (Diffusion-Weight Imaging).
Results. All patients after neurostimulation showed clinical improvement of movement coordination and decrease of muscle tone with formation of new motor skills, improvement of limb motor function. Statistically significant decrease of spasticity index was revealed up to 17% for arms and 23% for legs, improvement of motor skills on all three scales.
Conclusion. Translingual neurostimulation allows to affect all components of motor activity, as a result of which neuroplasticity processes are activated and the brain of patients with spastic diplegia becomes more receptive to motor rehabilitation aimed at restoration of motor control and formation of new motor skills.
About the Authors
K. S. AnpilogovaRussian Federation
Anpilogova Kristina S., Resident of Radiology Department
Akkuratova str. 2, Saint Petersburg, Russia, 197341
Competing Interests:
The authors declare no conflict of interest
D. S. Chegina
Russian Federation
Chegina Daria S., Postgraduate Student
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
T. S. Ignatova
Russian Federation
Ignatova Tatiana S., Neurologist
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
A. Yu. Efimtsev
Russian Federation
Efimtsev Aleksandr Yu., PhD, Leading Researcher, Research Laboratory of Radiation Imaging
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
G. E. Trufanov
Russian Federation
Trufanov Gennadiy E., Dr. Sc., Professor, Chief Researcher of the Research Department of Radiation Diagnostics, Head of the Department of Radiation Diagnostics and Medical Imaging
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
References
1. Federal clinical guidelines for providing medical care to children with cerebral palsy. Union of Pediatricians of Russia. 2013. 28 p. In Russian
2. Kodaneva LN, Adijatullina NV. The possibility of hydro kinesitherapy in the rehabilitation of children with the disease Little. Uchenye zapiski universiteta im. P.F. Lesgafta. 2018;1(155):122-126. In Russian
3. Oskoui M, Coutinho F, Dykeman J, et al. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–519. DOI: 10.1111/dmcn.12080.
4. Baranov AA, Namazova-Baranova LS, Kurenkov AL, et al. Kompleksnaya otsenka dvigatel’nykh funktsii u patsientov s detskim tserebral’nym paralichom. M: PediatR, 2014. 84 p. In Russian
5. Dean E. Cerebral palsy. Nurs Child Young People. 2017;29(3):11. DOI: 10.7748/ncyp.29.3.11.s11.
6. Badalyan LO. Detskaya nevrologiya. M.: MEDpress-inform, 2016. 608 p. In Russian [Бадалян Л.О. Детская неврология. М.: МЕДпресс-информ, 2016. 608 с.].
7. Troska ZA, Shershneva OA. Improvement of professional rehabilitation of children with cerebral palsy Scientific notes of RSSU. 2015 14(3/130):156-167. In Russian
8. Zvozil AV, Morenko ES, Vissarionov SV et al. Functional and spinal stimulation in complex aftertreatment with cerebral spastic infantile paralysis. Advances in current natural sciences. 2015;2:40-46. In Russian
9. Danilov YP, Tyler ME, Skinner KL, et al. Efficacy of electrotactile vestibular substitution in patients with peripheral and central vestibular loss. J Vestib Res. 2007;17 (2–3):119–113.
10. Danilov YP, Tyler ME, Kaczmarek KA. Vestibular sensory substitution using tongue electrotactile display. In Grunwald M. Human Haptic Perception: Basics and Applications. Birkhauser Basel Switzerland. 2008; 467-480.
11. Ignatova TS, Scoromets AR, Kolbin VE, et al. Translingual brain neurostimulation in treatment of the pediatric cerebral palsy. Bulletin of Rehabilitation Medicine. 2016;(6):10–16. In Russian
12. Ignatova TS, Ikoeva GA, Kolbin VE, et al. Effectiveness evaluation of translingual neurostimulation in motor rehabilitation in children with spastic diplegia. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(2):17-24. In Russian
13. Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625– 632. DOI: 10.1002/1522-2594(200010)44:4<625::aidmrm17>3.0.co;2-o.
14. Schilling K, Gao Y, Janve V, et al. Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed. 2017;30(12):1– 29. DOI: 10.1002/nbm.3787
15. Tournier J-D, Calamante F, Gadian DG, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23(3):1176–1185. DOI: 10.1016/j.neuroimage.2004.07.037.
16. Chandwani R, Kline JE, Harpster K, et al. Early micro- and macrostructure of sensorimotor tracts and development of cerebral palsy in high risk infants. Hum Brain Mapp. 2021;42(14):4708-4721. DOI: 10.1002/hbm.25579.
17. Jeurissen B, Tournier JD, Dhollander T, et al. Multitissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage. 2014;103:411–426. DOI: 10.1016/j.neuroimage.2014.07.061.
18. Wang Y, Wang Q, Haldar JP, et al. Quantification of increased cellularity during inflammatory demyelination. Brain. 2011;134(Pt 12):3590-601. DOI: 10.1093/brain/awr307.
19. Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000–1016. DOI: 10.1016/j.neuroimage.2012.03.072.
20. Hess CP, Mukherjee P, Han ET, et al. Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn Reson Med. 2006;56(1):104–117. DOI: 10.1002/mrm.20931.
21. Auriat AM, Borich MR, Snow NJ, et al. Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke. Neuroimage Clin. 2015;7:771–781. DOI: 10.1016/j.nicl.2015.03.007.
22. Jeurissen B, Leemans A, Tournier J, et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–2766. DOI: 10.1002/hbm.22099.
23. Jin Z, Bao Y, Wang Y, et al. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain. Surg Radiol Anat. 2019;41(9):1019–1028. DOI: 10.1007/s00276-019-02264-1.
24. Yeh F-C, Vettel JM, Singh A, et al. Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLOS Comput Biol. 2016;12(11):e1005203. DOI: 10.1371/journal.pcbi.1005203.
25. Mamedyarov AM, Namazova-Baranova LS, Ermolina YV, et al. Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy. Annals of the Russian Academy of Medical Sciences. 2014;9–10:70–76. In Russian
26. Zykin PA, Yalfimov AN, Aleksandrov TA, et al. Developmental features of corpus callosum in children revealed by MRI. Pediatrician (St. Petersburg). 2018;9(1):37- 48. DOI: 10.17816/PED9137-48. In Russian
27. Mourao LF, Friel KM, Sheppard JJ, et al. The role of the corpus callosum in pediatric dysphagia: preliminary findings from a diffusion tensor imaging study in children with unilateral spastic cerebral palsy. Dysphagia. 2017;32(5):703–713. DOI: 10.1007/s00455-017-9816-0.
28. Weinstein M, Green D, Geva R, et al. Interhemispheric and intrahemispheric connectivity and manual skills in children with unilateral cerebral palsy. Brain Struct Funct. 2014;219(3):1025-1040. DOI: 10.1007/s00429-013-0551-5.
29. Potapov AA, Goryainov SA, Zhukov VYu, et al. The long association pathways of the white matter: the modern neuroscience view. Zhurnal Voprosy Neirokhirurgii Imeni N.N. Burdenko. 2014;78(5):66-77. In Russian
30. Vagapova VSh, Borzilova OKh, Rybalko DYu, et al. Funktsional’naya anatomiya tsentral’noi nervnoi sistemy: uchebnoe posobie. 2-e izd; ispr. i dop. Ufa: Izd-vo FGBOU VO BGMU Minzdrava Rossii, 2018. 111 p. In Russian
Review
For citations:
Anpilogova K.S., Chegina D.S., Ignatova T.S., Efimtsev A.Yu., Trufanov G.E. Structural reorganization of the white matter pathways of the brain in patients with spastic diplegia after translingual neurostimulation. Translational Medicine. 2021;8(4):27-34. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-4-27-34