Preview

Translational Medicine

Advanced search

The glymphatic system and its role in the development of Alzheimer’s disease

https://doi.org/10.18705/2311-4495-2021-8-3-14-21

Abstract

One of the main concepts explaining the development of Alzheimer’s disease is currently the amyloid theory. It was reliably established that the accumulation of the pathological protein amyloid β provokes the launch of a number of pathochemical reactions that ultimately lead to the development of synaptic dysfunction and the formation of cognitive disorders. The protein amyloid β is also synthesized in the brain of people who do not suffer from neurodegenerative pathology. Normally, it is actively removed from the brain. However, the exact mechanisms for maintaining its clearance are not established. The recently discovered glymphatic system claims to be such a component. The present review provides a comprehensive analysis of suggestions that the development of glymphatic system dysfunction contributes to the accumulation of amyloid β and the development of the clinical picture of Alzheimer›s disease.

About the Authors

S. V. Vorobʼev
Almazov National Medical Research Centre; Saint Petersburg State Pediatric Medical University
Russian Federation

Vorob’ev Sergey V., MD, Dr. Sci., Chief Researcher, Research Laboratory of Neurology and Neurorehabilitation, Polenov Russian Scienific Research Institute of Neurosurgery — branch of Almazov National Medical Research Centre, prof. department of clinical and laboratory diagnostics, Saint-Petersburg State Pediatric Medical University

Akkuratova str. 2, Saint Petersburg, 197341



S. N. Yanishevskij
Almazov National Medical Research Centre; Military Medical Academy named after S.M.Kirov

Yanishevskij Stanislav N., MD, Dr. Sci., Head of Laboratory, Research Laboratory of Neurology and Neurorehabilitation, Polenov Russian Scienific Research Institute of Neurosurgery — branch of Almazov National Medical Research Centre

Akkuratova str. 2, Saint Petersburg, 197341



References

1. Breslin JW, Yang Y, Scallan JP, et al. Lymphatic vessel network structure and physiology. Compr Physiol 2018;9(1):207–299. DOI: 10.1002/cphy.c180015.

2. Cserr HF, Ostrach LH. Bulk flow of interstitial fluid after intracranial injection of Blue Dextran. 2000. Exp Neurol. 1974;45(1):50–60. DOI: 10.1016/0014-4886(74)90099-5.

3. Cserr HF, Cooper DN, Suri PK, et al. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981;240(4):F319–328. DOI: 10.1152/ajprenal.1981.240.4.F319.

4. Szentistvanyi I, Patlak CS, Ellis RA, et al. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984;246(6 Pt 2):F835–844. DOI: 10.1152/ajprenal.1984.246.6.F835.

5. Rennels ML, Gregory TF, Blaumanis OR, et al. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63. DOI: 10.1016/0006-8993(85)91383-6.

6. Vasina LV, Vlasov TD, Petrishchev NN. Functional heterogeneity of the endothelium (the review). Arterial hypertension. 2017;23(2):88–102. DOI: 10.18705/1607-419Х2017-23-2-88-102. In Russian

7. Babiyants AYa, Khananashvili YaA. Cerebral circulation: physiological aspects and modern research methods. Zhurnal fundamental’noi meditsiny i biologii. 2018;3:46–54. In Russian

8. Nikolenko VN, Oganesyan MV, Yakhno NN, et al. The brain’s glymphatic system: physiological anatomy and clinical perspectives. Neurology, neuropsychiatry, psychosomatics. 2018;10(4):94–100. DOI: 10.14412/2074-2711-2018-4-94-100. In Russian

9. Jessen NA, Munk ASF, Lundgaard I, et al. The glymphatic system – a beginner’s guide. Neurochem Res. 2015;40(12):2583–2599. DOI: 10.1007/s11064-015-1581-6.

10. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. DOI: 10.1126/scitranslmed.3003748.

11. Krysova AV, Tsirkin VI, Kunshin AA. Role of aquaporins in transport of water through biological membranes. Vyatskii meditsinskii vestnik. 2012;2:50–58. In Russian

12. Kondratyev AN, Tsentsiper LM. Glymphatic system of the brain: structure and practical significance. Russian Journal of Anaesthesiology and Reanimatology. 2019;6:72–80. DOI: 10.17116/anaesthesiology201906172. In Russian

13. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93(4):1543–1562. DOI: 10.1152/physrev.00011.2013.

14. Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, et al. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol. 2011;287:1–41. DOI: 10.1016/B978-0-12-386043-9.00001-3.

15. Li J, Zhou J, Shi Y. Scanning electron microscopy of human cerebral meningeal stomata. Ann Anat. 1996;178(3):259–261. DOI: 10.1016/S0940-9602(96)80059-8.

16. Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015; 212(7):991– 999. DOI: 10.1084/jem.20142290.

17. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560): 337–341. DOI: 10.1038/nature14432.

18. Antila S, Karaman S, Nurmi H, et al. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214(12):3645–3667. DOI: 10.1084/jem.20170391.

19. Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581–586. DOI: 10.1016/j.tins.2016.07.001.

20. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–861. DOI: 10.1002/ana.24271.

21. Franceschi C, Bonafè M, Valensin S, et al. Inflammaging. An evolutionary perspective on immunosenescence. Ann N YAcad Sci. 2000;908:244–254. DOI: 10.1111/j.1749-6632.2000.tb06651.x.

22. Cornejo F, von Bernhardi R. Age-dependent changes in the activation and regulation of microglia. Adv Exp Med Biol. 2016;949:205–226. DOI: 10.1007/978-3-319-40764-7_10.

23. Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016;1862(3):442–451. DOI: 10.1016/j.bbadis.2015.10.014.

24. Guzman-Martinez L, Maccioni RB, Andrade V, et al. Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol. 2019;10:1008. DOI: 10.3389/fphar.2019.01008.

25. Chen RL, Kassem NA, Redzic ZB, et al. Agerelated changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep. Exp Gerontol. 2009;44(4):289–296. DOI: 10.1016/j.exger.2008.12.004.

26. Fleischman D, Berdahl JP, Zaydlarova J. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012;7(12):e52664. DOI: 10.1371/journal.pone.0052664

27. Iliff JJ, Wang M, Zeppenfeld DM, et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci. 2013;33(46):18190– 18199. DOI: 10.1523/JNEUROSCI.1592-13.2013.

28. Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–99. DOI: 10.1001/jamaneurol.2016.4370.

29. Demina TL, Boiko AN, Chekhonin VP, et al. Blood-brain barrier. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 1999;99(8):57–62. In Russian

30. Bradbury M. The concept of а blood-brain barrier. London: John Wiley & Sons, 1983. 480 p. [Russ. transl.]

31. Vorob›ev SV, Savicheva AM, Shalepo KV, et all. Metody laboratornoi diagnostiki bakterial›nykh meningitov (meningo-ehntsefalitov). SPb.: SPBGPMU, 202024 p. In Russian

32. Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302. DOI: 10.1016/j.neuron.2014.12.032.

33. Bowman GL, Kaye JA, Quinn JF. Dyslipidemia and blood-brain barrier integrity in Alzheimer’s disease. Curr Gerontol Geriatr Res. 2012;2012:184042. DOI:10.1155/2012/184042.

34. Medina M, Avila J. The role of extracellular Tau in the spreading of neurofibrillary pathology. Front Cell Neurosci. 2014;8:113. DOI: 10.3389/fncel.2014.00113.

35. Lewis J, Dickson DW. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016;131(1):27–48. DOI: 10.1007/s00401-015-1507-z.

36. Castillo-Carranza DL, Sengupta U, GuerreroMuñoz MJ, et al. Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles.J Neurosci. 2014;34(12):4260–4272. DOI: 10.1523/JNEUROSCI.3192-13.2014.

37. Harrison IF, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576–2593. DOI: 10.1093/brain/awaa179.

38. Saito S, Yamamoto Y, Ihara M. Development of a multicomponent intervention to prevent Alzheimer’s disease. Front Neurol. 2019;10:490. DOI: 10.3389/fneur.2019.00490.


Review

For citations:


Vorobʼev S.V., Yanishevskij S.N. The glymphatic system and its role in the development of Alzheimer’s disease. Translational Medicine. 2021;8(3):14-21. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-3-14-21

Views: 1308


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)