Preview

Translational Medicine

Advanced search

THE ACTIVITY OF NO-SYNTHASES IN THE BRAIN, MYOCARDIUM AND SKELETAL MUSCLES OF OBESE RATS AND THE INFLUENCE OF LONG-TERM TREATMENT WITH INTRANASAL INSULIN

https://doi.org/10.18705/2311-4495-2015-0-1-39-45

Abstract

Background. The abnormalities of micro- and macrocirculation in obesity are associated with the changes in the activity of NO-synthases, the enzymes catalyzing synthesis of endogenous NO. However, in experimental obesity they are not well understood. There are no data on the influence of long-term treatment with intranasally administered insulin (I-I) that is used for the treatment of pre-diabetic states on NO-synthase activity. Objective. The aim of this work was to study the activity of NO-synthases in the tissues of rats with obesity induced by high- fat diet and the influence of long-term I-I treatment on them. Design and methods. To induce the obesity, Wistar male rats received a high-fat diet during 4 months. The I-I treatment was started on the 60th day of the diet, and carried out for two months at a daily dose 0.48 IU/rat. The activity of total, neuronal and endothelial isoforms of NO-synthase in the brain, myocardium and skeletal muscles was evaluated. Results. It was shown that in the myocardium and skeletal muscles of obese rats the activity of total and endothelial NO-synthases was decreased, and in the brain it has not significantly changed. The treatment of obese rats with II resulted in partial or complete restoration of the activity of total and endothelial NO-synthases in the myocardium and skeletal muscles, and caused an increase of NO-synthase activity in the brain above this level in control. Conclusion. Summing up, long-term I-I treatment restores insulin signaling system in the brain and positively affect the NO-synthase system in CNS and periphery, attenuated in the obesity, which can lead to improved blood circulation and to prevent the development of dysfunctions of the nervous, the cardiovascular and other systems.

About the Authors

L. A. Kuznetsova
ФГБУН «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


K. V. Derkach
ФГБУН «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


T. S. Sharova
ФГБУН «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


V. M. Bondareva
ФГБУН «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


A. O. Shpakov
ФГБУН «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


References

1. Bourgoin F, Bachelard H, Badeau M et al. Endothelial and vascular dysfunctions and insulin resistance in rats fed a high-fat, high-sucrose diet. Am J Physiol. 2008;295 (3):1044-1055. doi: 10.1152/ajpheart.00516.2008.

2. Kearney MT, Duncan ER, Kahn M, Wheatcroft SB. Insulin resistance and endothelial cell dysfunction: studies in mammalian models. Exp Physiol. 2008;93 (1) :158-163.

3. Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002;26(6):754-764.

4. Anfossi G, Massucco P, Mattiello L et al. Insulin influences the nitric oxide cyclic nucleotide pathway in cultured human smooth muscle cells from corpus cavernosum by rapidly activating a constitutive nitric oxide synthase. Eur J Endocrinol. 2002;147(5):689-700.

5. Li H, Jamal J, Plaza C et al. Structures of human constitutive nitric oxide synthases. Acta Crystallogr. 2014;70:2667-2674. doi: 10.1107/S1399004714017064.

6. Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. Nitric oxide synthases in heart failure. Antioxid Redox Signal. 2013;18(9):1078-1099. doi: 10.1089/ars.2012.4824.

7. Zecchin HG, Bezerra RM, Carvalheira JB et al. Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance - the obese middle-aged and the spontaneously hypertensive rats. Diabetologia. 2003;46 (4):479-491.

8. Benedict C1, Frey WH 2nd, Schioth HB, Schultes B, Born J, Hallschmid M. Intranasal insulin as a therapeutic option in the treatment ofcognitive impairments. Exp Gerontol. 2011;46(2-3):112-115. doi: 10.1016/j.exger.2010.08.026.

9. Toda N, Okamura T. Cerebral blood flow regulation by nitric oxide in Alzheimer’s disease. J Alzheimers Dis. 2012;32(3):569-578. doi: 10.3233/JAD-2012-120670.

10. Srinivasan K1, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52 (4):313-320.

11. Shpakov AO, Chistyakova OV, Derkach KV et al. Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes. Central Eur J Biol. 2012;7:33-47.

12. Шпаков АО, Деркач КВ, Чистякова ОВ, Мойсе- юк ИВ, Сухов ИБ, Бондарева ВМ. Влияние интраназального инсулина и серотонина на функциональную активность аденилатциклазной системы в миокарде, яичниках и матке крыс с пролонгированной неонатальной моделью сахарного диабета. Журн эвол биохим физиол. 2013;49 (2) :118-127.

13. Деркач КВ, Шпакова ЕА, Жарова ОА, Шпаков АО. Метаболические изменения у крыс, иммунизированных БСА-конъюгатом пептида, производного N-концевого участка меланокортинового рецептора 4-го типа. Доклады Академии наук. 2014;458 (1):102-105.

14. Stuehr DJ, Griffith OW. Purification, assay and properties ofmammalian nitric oxide synthases. In: Methods in Nitric Oxide Research (Eds. M. Feelisch, J. S. Stamler). Chichester: John Wiley&Sons Inc. 1996:177-186.

15. Eghbalzadeh K, Brixius K, Bloch W, Brinkmann C. Skeletal muscle nitric oxide (NO) synthases and NOsignaling in “diabesity” - what about the relevance of exercise training interventions? Nitric Oxide. 2014;15:28-40. doi: 10.1016/j.niox.2013.12.009.

16. Mezghenna K, Leroy J, Azay-Milhau J et al. Counteracting neuronal nitric oxide synthase proteasomal degradation improves glucose transport in insulin-resistant skeletal muscle from Zucker fa/fa rats. Diabetologia. 2014;57 (I) :177-186. doi: 10.1007/s00125-013-3084-9.

17. Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne). 2014;5:161. doi: 10.3389/fendo.2014.00161.

18. Шпаков АО, Деркач КВ. Пептидергические сигнальные системы мозга при сахарном диабете. Цитология. 2012;54(10):733-741. [Shpakov AO, Derkach KV. The brain peptidergic signaling systems in diabetes mellitus. Tsitologiya. 2012;54(10):733-741. In Russian].

19. Шпаков АО. Сигнальные системы мозга, регулируемые инсулином, ИФР-1 и лептином, в условиях предиабета и сахарного диабета 2-го типа. Цитология. 2014;56 (II) :789-799. [Shpakov AO. The role of alterations in the brain signaling systems regulated by insulin, IGF-1 and leptin in the transition of impaired glucose tolerance to overt type 2 diabetes mellitus. Tsitologiya. 2014;56(11):789-799. In Russian].


Review

For citations:


Kuznetsova L.A., Derkach K.V., Sharova T.S., Bondareva V.M., Shpakov A.O. THE ACTIVITY OF NO-SYNTHASES IN THE BRAIN, MYOCARDIUM AND SKELETAL MUSCLES OF OBESE RATS AND THE INFLUENCE OF LONG-TERM TREATMENT WITH INTRANASAL INSULIN. Translational Medicine. 2015;(1):39-45. (In Russ.) https://doi.org/10.18705/2311-4495-2015-0-1-39-45

Views: 784


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)