Preview

Translational Medicine

Advanced search

THE STUDY OF DOSEDEPENDENCY OF THE STIMULATING EFFECT OF PEPTIDE DERIVED FROM THYROTROPIN HORMONE RECEPTOR ON PRODUCTION OF THYROID HORMONES IN RATS

https://doi.org/10.18705/2311-4495-2015-0-1-15-21

Abstract

Background. Search and development of new regulators of functional activity of the hypothalamic- pituitary-thyroid axis is one of actual problems in endocrinology and pharmacology. We have previously shown that palmitoylated peptide 612-627 (Pal) structurally corresponding to the third intracellular loop of receptor of thyroid-stimulating hormone (TSH) activates the adenylyl cyclase signaling system in thyroidal membranes in vitro and stimulates the production of thyroxine by the thyroid gland in vivo. Objective. The aim of this work was to study a dose-dependency of the stimulating effect of peptide 612-627 (Pal) on the level of thyroid hormones in its intranasal and intramuscular administration into rats. Design and methods. The peptide was administered once to Wistar male rats at the doses from 45 to 900 pg/kg when administered intranasally and at the doses from 150 to 1350 pg/kg when administered intramuscularly. Prior to administration and for 6 h after administration the changes of the levels of free (fT4) and total thyroxine (tT4) and total triiodothyronine (tT3) were evaluated. Results. It is shown that peptide 612-627 (Pal) in both routes of administration in a dose- dependent manner increased the levels of fT4 and tT3 At the same time, the intranasal route was more effective as ED50 value and the maximal stimulating effect on fT4 production when peptide administered intranasally was 87 pg/kg and 38 %, while in the case of intramuscular route - 275 pg/kg and 25 %, respectively. Conclusion. These findings indicate the ability of peptide 612-627 (Pal) to effectively stimulate hormone-producing function of the thyroid gland when peptide administered intranasally into rats at the range of the doses 225-450 pg/kg.

About the Authors

K. V. Derkach
Федеральное государственное бюджетное учреждение науки «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


E. A. Shpakova
Институт химии Санкт-Петербургского государственного университета
Russian Federation


V. M. Bondareva
Федеральное государственное бюджетное учреждение науки «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


A. O. Shpakov
Федеральное государственное бюджетное учреждение науки «Институт эволюционной физиологии и биохимии им. И. М. Сеченова» Российской академии наук
Russian Federation


References

1. Klieverik LP, Coomans CP, Endert E et al. Thyroid hormone effects on whole-body energy homeostasis and tissue-specific fatty acid uptake in vivo. Endocrinology. 2009;150(12):5639-5648. doi: 10.1210/en.2009-0297.

2. Beck-Peccoz P, Persani L, Calebiro D et al. Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab. 2006;20 (4):529-546.

3. Persani L, Calebiro D, Cordella D et al. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol. 2010;322(1-2):72-82. doi: 10.1016/j. mce.2010.01.008.

4. Chiamolera MI, Wondisford FE. Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology. 2009;150(3):1091- 1096. doi: 10.1210/en.2008-1795.

5. Pellegriti G, Scollo C, Regalbuto C et al. The diagnostic use of the rhTSH/thyroglobulin test in differentiated thyroid cancer patients with persistent disease and low thyroglobulin levels. Clin Endocrinol (Oxf). 2003;58(5):556-561.

6. Duntas LH, Cooper DS. Review on the use ofa decade ofrecombinant human TSH: prospects and novel uses. Thyroid. 2008;18(5):509-516. doi: 10.1089/thy.2007.0331.

7. Шпаков АО. Структурно-функциональная организация рецепторов полипептидных гормонов, содержащих LRR-повторы, и их взаимодействие с гетеротри- мерными G-белками. Цитология. 2009;51(8):637-649. [Shpakov AO. Structural-functional organization of polypeptide hormones receptors containing LRR-repeats and their interaction with heterotrimeric G proteins. Tsitologiya. 2009;51(8):637-649. In Russian].

8. Shpakov AO., Shpakova EA., Derkach KV. The sensitivity of the adenylyl cyclase system in rat thyroidal and extrathyroidal tissues to peptides corresponding to the third intracellular loop of thyroid-stimulating hormone receptor. Current Topics in Peptide & Protein Research. 2012;13:61-73.

9. Шпаков АО, Шпакова ЕА, Тарасенко ИИ, Деркач КВ. Пептид 612-627 рецептора тиреотропного гормона и его модифицированные аналоги как регуляторы аденилатциклазы в щитовидной железе крыс. Цитология. 2014;56(7):526-535. [Shpakov AO, Shpakova EA, Tarasenko II, Derkach KV. Peptide 612-627 of thyreotropin receptor and its modified derivatives as the regulators of adenylyl cyclase in the rat thyroid gland. Tsitologiya. 2014;56 (7):526-535. In Russian].

10. Шпакова ЕА, Шпаков АО, Чистякова ОВ и др. Биологическая активность in vitro и in vivo пептидов, соответствующих третьей цитоплазматической петле рецептора тиреотропина. Доклады Академии наук. 2012;443(1): 123-126.

11. Shpakov AO, Chistyakova OV, Derkach KV et al. Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes. Cent Eur J Biol. 2012;7 (1):33-47.

12. Chapman CD, Frey WH, Craft S et al. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013; 30(10):2475-2484. doi: 10.1007/s11095- 012-0915-1.

13. Covic L, Gresser AL, Talavera J, Swift S, Kuliopulos A. Activation and inhibition of G protein-coupled receptors by cell-penetrating membrane-tethered peptides. Proc Natl Acad Sci USA. 2002;99(2):643-648.

14. Miller J, Agarwal A, Devi LA et al. Insider access: pepducin symposium explores a new approach to GPCR modulation. Ann NY Acad Sci. 2009;1180 Suppl 1:1-12. doi: 10.1111/j.1749-6632.2009.05326.x.

15. Shpakov AO. Signal protein-derived peptides as functional probes and regulators of intracellular signaling. J Amino Acids. 2011 ;20 11: 65605 1. doi:10.4061/2011/656051.

16. Tressel SL, Koukos G, Tchernychev B, Jacques SL, Covic L, Kuliopulos A. A pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. Methods Mol Biol. 2011;683:259-75. doi: 10.1007/978-1- 60761-919-2_19.

17. Шпаков АО, Шпакова ЕА. Применение пептидной стратегии для создания новых лекарственных препаратов. Трансляционная медицина. 2013;6:14-22. [Shpakov AO, Shpakova EA. The use of the peptide strategy for creation of new drugs. Translational Medicine. 2013;6:14-22. In Russian].

18. Shpakov AO. GPCR-peptides: prospective use in biology and medicine. Endocrinol Metab Synd. 2013;2: e116. doi: 10.4172/2161-1017.1000e116.

19. Шпаков АО, Деркач КВ. Новые достижения в разработке и применении GPCR-пептидов. Журн эвол биохим физиол. 2015;51(1):11-16.

20. Shpakov AO, Gur’yanov IA, Kuznetsova LA et al. Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol. 2007;37(7):705-714.

21. Agarwal A, Tressel SL, Kaimal R et al. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res. 2010;70(14):5880-5890. doi: 10.1158/0008-5472.

22. Shpakov AO, Shpakova EA, Tarasenko II et al. The peptides mimicking the third intracellular loop of 5 hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system. Int J Pept Res Ther. 2010;16:95-105.

23. Шпаков АО, Шпакова ЕА, Тарасенко ИИ, Деркач КВ. Рецепторная и тканевая специфичность действия пептидов, производных цитоплазматических участков рецепторов серпантинного типа. Биол мембраны. 2011;28 (6):453-462.

24. O'Callaghan K, Kuliopulos A, Covic L. Targeting CXCR4 with cell-penetrating pepducins in lymphoma and lymphocytic leukemia. J Biol Chem. 2012;287(16):12787- 12796. doi: 10.1074/jbc.R112.355461.

25. Zhang P, Gruber A, Kasuda S et al. Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation. 2012;126 (1);83-91. doi: 10.1161/CIRCULATIONAHA.112.091918.

26. Шпакова ЕА, Деркач КВ, Шпаков АО. Биологическая активность липофильных производных пептида 562-572 рецептора лютеинизирующего гормона крысы. Доклады Академии наук. 2013;452(4):453-456.

27. Шпаков АО, Шпакова ЕА. Разработка негормональных регуляторов аденилатциклазной сигнальной системы на основе пептидов, производных третьей цитоплазматической петли соматостатиновых рецепторов. Биомед химия. 2012;58, вып 4:446-456. [Shpakov AO, Shpakova EA. Development of non-hormonal regulators of the adenylyl cyclase signaling system based on the peptides, derivatives of the third intracellular loop of somatostatin receptors. Biomedical Chemistry. 2011;5 Issue 3:246-252. In Russian]. doi: 10.1134/S1990750811030127.

28. Michael ES1, Kuliopulos A, Covic L, Steer ML, Perides G. Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol. 2013;304(5):516-526. doi: 10.1152/ajpgi.00296.2012.

29. Деркач КВ, Шпакова ЕА, Шпаков АО. Пальмито- илированный пептид 562-572 рецептора лютеинизирующего гормона повышает уровень тестостерона у самцов крыс. Бюл. экспер. биол. мед. 2014;158(8):172-176.


Review

For citations:


Derkach K.V., Shpakova E.A., Bondareva V.M., Shpakov A.O. THE STUDY OF DOSEDEPENDENCY OF THE STIMULATING EFFECT OF PEPTIDE DERIVED FROM THYROTROPIN HORMONE RECEPTOR ON PRODUCTION OF THYROID HORMONES IN RATS. Translational Medicine. 2015;(1):15-21. (In Russ.) https://doi.org/10.18705/2311-4495-2015-0-1-15-21

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)