The effect of intravenous administration to rats of magnetite nanoparticles with various shells on the functional state and morphology of the endothelium and on antioxidant status
https://doi.org/10.18705/2311-4495-2020-7-2-52-64
Abstract
About the Authors
Y. G. ToropovaRussian Federation
Toropova Yana G., PhD, Associate Professor, Head of Bioprosthetics and Cardioprotection Research Lab
Parkhomenko str. 15-B, Saint Petersburg, 194156
D. S. Motorina
Russian Federation
Motorina Darya S., Research Assistant
Saint Petersburg
M. N. Gorshkova
Russian Federation
Gorshkova Mariya N., Research Assistant, Bioprosthetics and Cardioprotection Research Lab
Saint Petersburg
K. G. Gareev
Russian Federation
Gareev Kamil G., PhD, Assistant Professor
Saint Petersburg
D. V. Korolev
Russian Federation
Korolev Dmitriy V., PhD, Associate Professor, Head of Nanotechnology Research Lab
Saint Petersburg
A. A. Muzhikyan
Russian Federation
Muzhikyan Arman A., PhD, Research Assistant, Vivarium, Centre of Doclinical Studies
Saint Petersburg
References
1. Reddy L, Arias J, Nicolas J, et al. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews. 2012; 112(11):58185878.
2. Dobson J. Magnetic nanoparticles for drug delivery. Drug Development Research. 2006; 67:55–60.
3. Sun C, Lee J, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews. 2008; 60(11):1252–1265.
4. Liu X, Choo E, Ahmed A, et al. Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. Journal of Materials Chemistry B. 2014; 2(1):120–128.
5. Haun JB, Yoon T-J, Lee H, Weissleder R. Magnetic nanoparticle biosensors. WIREs: Nanomedicine and Nanobiotechnology. 2010; 2(3):291–304.
6. Gupta AK, Curtis AS. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004; 25(15): 3029–3040.
7. Sun S, Zeng H, Robinson DB, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society. 2004; 126(1):273–279.
8. Mandal S, Chaudhuri K. A simple method for the synthesis of ultrafine carbon nanoparticles and its interaction with bovine serum albumin. Advanced Science Letters. 2012; 5(1):139–143.
9. Van Sliedregt A, Radder AM, de Groot K, van Blitterswijk CA. In vitro biocompatibility testing of polylactides Part I Proliferation of different cell types. Journal of Materials Science: Materials in Medicine. 1992;3:365–370.
10. Toropova YaG, Zelinskaya IA, Markitanova AC, et al. The influence of magnethite nanoparticles and FemOn- SiO2 colloidal particles on endothelium functional statement after intravenous injection in rats. Russian Journal of physiology = Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenoval. 2017; 103 (12):1416–1424. In Russian.
11. Mandal S, Chaudhuri K. Magnetic core-shell nanoparticles for biomedical applications. In: Sharma S, (eds) Complex Magnetic Nanostructures. Cham: Springer International Publishing AG, 2017:425–453.
12. Toropova YaG, Golovkin AS, Malashicheva AВ, et al. In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles. International Journal of Nanomedicine. 2017; 12: 593–603.
13. Waynforth HB, Flecknell PA. Experimental and Surgical Technique in the Rat. 2nd ed. London: Academic Press, 1992: p. 382.
14. Toropova YaG, Pechnikova NA, Zelinskaya IA, et al. Hemocompatibility of magnetic magnethite nanoparticles and magnetite-silica composites in vitro. Bulletin of Siberian Medicine = Byulleten’ sibirskoy meditsiny. 2018; 17(3):157–167. In Russian.
15. Zelinskaya IA, Toropova YaG. Wire myography in modern scientific researches: methodical aspects. Regional blood circulation and microcirculation = Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2018;17(1):83–89. In Russian.
16. Vladimirov YuA, Proskurnina EV. Free radicals and cell chemiluminescence. Advances in biological chemistry = Uspekhi biologicheskoy khimii. 2009; 49: 341–388. In Russian.
17. Uotila J, Kirkkola AL, Rorarius M, et al. The total peroxyl radical-trapping ability of plasma and cerebrospinal fluid in normal and preeclamptic parturients. Free Radical Biology and Medicine. 1994;16(5):581–590.
18. Petrenko VM. The reticular structure of the microcirculatory. University proceedings. Volga region. Medical sciences = Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Meditsinskie nauki. 2010; 13(1): 37–46. In Russian.
19. Tybinka AM, Paladiychuk ER. Characteristic of the blood vessels of the intestine and its mesentery. Scientific messenger of LNU of veterinary medicine and biotechnologies = Naukovyj visnyk LNUVMBT imeni S.Z. G’zhyc’kogo. 2015; 17 (2): 232–240. In Russian.
20. Junqueira L, Carneiro J. Junqueira’s basic histology. Text and atlas. 11th ed. New York: McGraw-Hill, 2005. p. 544.
21. Korzhevskiy DE, Kolos EA, Karpenko MN, et al. Histochemical determination of metals. SPb: SpetsLit, 2016. p. 63. In Russian.
Review
For citations:
Toropova Y.G., Motorina D.S., Gorshkova M.N., Gareev K.G., Korolev D.V., Muzhikyan A.A. The effect of intravenous administration to rats of magnetite nanoparticles with various shells on the functional state and morphology of the endothelium and on antioxidant status. Translational Medicine. 2020;7(2):52-64. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-2-52-64