Preview

Трансляционная медицина

Расширенный поиск

Патофизиологические и морфологические аспекты врожденного гиперинсулинизма (обзор литературы)

https://doi.org/10.18705/2311-4495-2020-7-2-12-20

Аннотация

Врожденный гиперинсулинизм является одной из наиболее частых причин гипогликемии у детей в возрасте до 1 года. При отсутствии адекватной фармакологической коррекции гипогликемических приступов возможно развитие необратимых изменений в центральной нервной системе с последующей инвалидизацией таких больных. Однако из-за неэффективности консервативной терапии во многих случаях требуется хирургическое вмешательство, объем которого зависит от формы заболевания. Но вследствие несовершенства методов предоперационной диагностики, дифференциальная диагностика между очаговой и диффузной формами врожденного гиперинсулинизма производится интраоперационно патологоанатомами. В связи с тем, что патоморфология поджелудочной железы при врожденном гиперинсулинизме остается малоизученной, гистологическая и дальнейшая иммуногистохимическая диагностика представляет значительные трудности.
В данном обзоре представлены имеющиеся в литературе данные о гистологической, гистохимической и иммуногистохимической характеристике эндокринной части поджелудочной железы, которые могут оказаться полезными в ходе дальнейшего изучения врожденного гиперинсулинизма. В частности, подробно изложены существующие на сегодняшний день подходы к морфологической классификации и интраоперационной гистологической диагностике различных форм врожденного гиперинсулинизма. Кроме того, дано подробное описание экспрессии факторов транскрипции NeuroD1, Nkx2.2 и Isl1 в ткани поджелудочной железы при иммуногистохимическом исследовании. Описан профиль иммуногистохимического окрашивания в поджелудочной железе дофаминовых и соматостатиновых рецепторов, а также соматостатина и хромогранина А.
Объединенные в этом обзоре данные многочисленных исследований способны помочь в дальнейшем поиске решений диагностических и терапевтических проблем, связанных с врожденным гиперинсулинизмом.

Об авторе

А. А. Перминова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Перминова Анастасия Аркадьевна, аспирант

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



Список литературы

1. De León DD, Stanley CA. Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin Pract Endocrinol Metab. 2007; 3(1):57–68.

2. Laidlaw GF. Nesidioblastoma, the islet tumor of pancreas. Am J Pathol. 1938; 14(2):125–139.

3. Glaser B, Landau H, Smilovic A et al. Persistent hyperinsulinemic hypoglycemia of infancy: long-term treatment with the somatostatin analogue Sandostatin. Clin Endoc. 1989; 31:71–80.

4. Stanley CA. Advances in diagnosis and treatment of hyperinsulinism in infants and children. J Clin Endocrinol Metab. 2002; 87(11):4857–4859.

5. Mathew PM, Young JM, Abu-Osba YK et al. Persistent neonatal hyperinsulinism. Clinical Pediatrics (Phila). 1988; 27(3):148–151.

6. Galcheva S, Demirbilek H, Al-Khawaga S et al. The genetic and molecular mechanisms of congenital hyperinsulinism. Front Endocrinol (Lausanne). 2019; 10:111.

7. Sempoux C, Guiot Y, Lefevre A et al. Neonatal hyperinsulinemic hypoglycemia: heterogeneity of the syndrome and keys for differential diagnosis. J Clin Endocrinol Metab. 1998; 83(5):1455–1461.

8. McQuarrie I. Idiopathic spontaneously occurring hypoglycemia in infants clinical significance of problem and treatment. Archives of Pediatrics & Adolescent Medicine. 1954; 87(4):399–428.

9. Han B, Mohamed Z, Estebanez MS et al. Atypical forms of congenital hyperinsulinism in infancy are associated with mosaic patterns of immature islet cells. J Clin Endocrinol Metab. 2017; 102(9):3261–3267.

10. Houghton J, Banerjee I, Shaikh G et al. Unravelling the genetic causes of mosaic islet morphology in congenital hyperinsulinism. J Pathol Clin Res. 2020; 6(1):12–16.

11. Gillis D. Familial Hyperinsulinism. 2003 Aug 19 [Updated 2019 Mar 21]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020.

12. Craigie RJ, Salomon-Estebanez M, Yau D et al. Clinical diversity in focal congenital hyperinsulinism in infancy correlates with histological heterogeneity of islet cell lesions. Front Endocrinol (Lausanne). 2018; 9:619.

13. Lord K, Dzata E, Snider KE et al. Clinical presentation and management of children with diffuse and focal hyperinsulinism: a review of 223 cases. The Journal of Clinical Endocrinology & Metabolism. 2013; 98(11):1786–1789.

14. Christiansen CD, Petersen H, Nielsen AL et al. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. European Journal of Nuclear Medicine and Molecular Imaging. 2017; 45(2):250–261.

15. Han B, Newbould M, Batra G et al. Enhanced islet cell nucleomegaly defines diffuse congenital hyperinsulinism in infancy but not other forms of the disease. Am J Clin Pathol. 2016; 145(6):757–768.

16. Лилли Р. Патогистологическая техника и практическая гистохимия. М.: МИР, 1969. C. 274–279.

17. Bensley RR. Studies on the pancreas of the guinea pig. The American journal of anatomy. 1911; 12(3):308–311.

18. Martin WB. Neutral stains as applied to the granules of the pancreatic islet cells. Anat Rec. 1915; 9:475–481.

19. Bowie DJ. Cytological studies of the islets of Langerhans in a teleost, Neomaenis griseus. Anat Rec. 1924; 29(1):57–73.

20. Kunz J, Habcrland H, Schmidt A et al. Immunhistochemischer Chromogranin A-Nachweis und morphometrische Befunde bei freihkindlicher Nesidioblastose. Acta Histochem. 1990; 89(2):131–140.

21. Cho JH, Tsai MJ. The role of BETA2/NeuroD1 in the development of the nervous system. Molecular Neurobiology. 2004; 30(1):35–47.

22. Oyama K, Sanno N, Teramoto A et al. Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Modern Pathology. 2001; 14(9):892–899.

23. Cerf ME. Transcription factors regulating β-cell function. European Journal of Endocrinology. 2006; 155(5):671–679.

24. Itkin-Ansari P, Marcora E, Geron I et al. NeuroD1 in the endocrine pancreas: localization and dual function as an activator and repressor. Developmental Dynamics. 2005; 233(3):946–953.

25. Gu C, Stein GH, Pan N et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010; 11(4):298–310.

26. Moin ASM, Butler AE. Alterations in beta cell identity in type 1 and type 2 diabetes. Current Diabetes Reports. 2019; 19:83.

27. Demirbilek H, Hatipoglu N, Gul U et al. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatric Diabetes. 2018; 19(5):898–904.

28. Malecki MT, Jhala US, Antonellis A et. al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nature Genetics. 1999; 23(3):323–328.

29. Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes. 2019; 12:1047–1056.

30. Mastracci TL, Wilcox CL, Arnes L et al. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol. 2011; 359(1):1–11.

31. Chao CS, Loomis ZL, Lee JE et al. Genetic identification of a novel NeuroD1 function in the early differentiation of islet α, PP and ε cells. Dev Biol. 2007; 312(2):523–532.

32. Salisbury RJ, Han B, Jennings RE et al. Altered phenotype of β-cells and other pancreatic cell lineages in patients with diffuse congenital hyperinsulinism in infancy caused by mutations in the ATP-sensitive K-channel. Diabetes. 2015; 64(9):3182–3188.

33. Doyle MJ, Sussel L. Nkx2.2 regulates β-cell function in the mature islet Diabetes. 2007; 56(8):19992007.

34. Flanagan SE, De Franco E, Lango Allen H et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metabolism. 2014; 19(1):146–154.

35. Xia CQ, Zhang P, Li S et al. C-Abl inhibitor imatinib enhances insulin production by β cells: c-Abl negatively regulates insulin production via interfering with the expression of NKx2.2 and GLUT-2. PLoS One. 2014; 9(5):e97694.

36. Anderson KR, Torres CA, Solomon K et al. Cooperative transcriptional regulation of the essential pancreatic islet gene NeuroD1 (beta2) by Nkx2.2 and neurogenin 3. J Biol Chem. 2009; 284(45):31236–31248.

37. Hill JT, Chao CS, Anderson KR et al. Nkx2.2 activates the ghrelin promoter in pancreatic islet cells. Mol Endocrinol. 2010; 24(2):381–390.

38. Karlsson O, Thor S, Norberg T et al. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature. 1990; 344(6269):879–882.

39. Guo T, Wang W, Zhang H et al. ISL1 promotes pancreatic islet cell proliferation. PLoS One. 2011; 6(8):e22387.

40. Ediger BN, Du A, Liu J et al. Islet-1 is essential for pancreatic b-cell function. Diabetes. 2014; 63(12):42064217.

41. Leonard J, Serup P, Gonzalez G et al. The LIM family transcription factor Isl-1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Biochemistry. 1992; 89(14):62476251.

42. Yang Z, Zhang Q, Lu Q et al. ISL-1 promotes pancreatic islet cell proliferation by forming an ISL-1/Set7/9/ PDX-1 complex. Cell Cycle. 2015; 14(24):3820–3829.

43. Chen J, Fu R, Cui Y et al. LIM-homeodomain transcription factor Isl-1 mediates kisspeptin’s effect on insulin secretion in mice. Mol Endocrinol. 2014; 28(8):1276–1290.

44. Tanizawa Y, Riggs AC, Dagogo-Jack S et al. Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism. Diabetes. 1994; 43(7):935–941.

45. Krivova YS, Barabanov VM, Proshchina AE et al. Distribution of chromogranin A in human fetal pancreas. Bull Exp Biol Med. 2014; 156: 865–868.

46. Portela-Gomes GM, Gayen JR, Grimelius L et al. The importance of chromogranin A in the development and function of endocrine pancreas. Regulatory Peptides. 2008; 151(1–3):19–25.

47. Wollam J, Mahata S, Riopel M et al. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res. 2017; 368(3):487–501.

48. Tatemoto K, Efendic S, Mutt V et al. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986; 324(6096):476–478.

49. Yasoshima H, Nakata Y, Ohkubo E et al. An autopsy case of pancreatic and ectopic nesidioblastosis Pathology International. 2001; 51(5):376–379.

50. Shao S, Zeng Z, Hu S. An observational analysis of insulinoma from 1 single institution. QJM. 2018; 111(4):237–241.

51. Portela-Gomes GM, Stridsberg M. Selective processing of chromogranin A in the different islet cells in human pancreas. The Journal of Histochemistry & Cytochemistry. 2001; 49(4):483–490.

52. Ege B, Dinc T, Kayilioglu SI et al. Expression of nestin and chromogranin in regeneration zones of rat pancreas. Ann Ital Chir. 2017;88:76–81.

53. Moin ASM, Cory M, Choi J et al. Increased Chromogranin A-positive hormone-negative cells in chronic pancreatitis. J Clin Endocrinol Metab. 2018; 103(6):21262135.

54. Ribeiro MJ, De Lonlay P, Delzescaux T et al. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med. 2005; 46(4):560–566.

55. Laje P, States LJ, Zhuang H et al. Accuracy of PET/ CT Scan in the diagnosis of the focal form of congenital hyperinsulinism. J Pediatr Surg. 2013; 48(2):388–393.

56. Zhang Y, Zheng R, Meng X et al. Pancreatic endocrine effects of dopamine receptors in human islet cells. Pancreas. 2015; 44(6):925–929.

57. Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors - IUPHAR Review 13. British journal of pharmacology. 2015; 172(1):1–23.

58. Bucolo C, Leggio GM, Drago F et al. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacology & Therapeutics. 2019; 203:107392.

59. Underland LJ, Mark ER, Katikaneni R et al. The impact of dopamine on insulin secretion in healthy controls. Indian Journal of Critical Care Medicine. 2018; 22(4):209–213.

60. Ste Marie L, Palmiter RD. Norepinephrine and epinephrine-deficient mice are hyperinsulinemic and have lower blood glucose. Endocrinology. 2003; 144(10):44274432.

61. Freyberg Z, Aslanoglou D, Shah R et al. Intrinsic and antipsychotic drug-induced metabolic dysfunction in schizophrenia. Frontiers in Neuroscience. 2017; 11:432.

62. Farino ZJ, Morgenstern TJ, Maffei A et al. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion Mol Psychiatry. 2019.

63. Garcia Barrado MJ, Iglesias Osma MC, Blanco EJ et al. Dopamine modulates insulin release and is involved in the survival of rat pancreatic beta cells. PLoS One. 2015; 10(4):e0123197.

64. Sakano D, Choi S, Kataoka M et al. Dopamine D2 receptor-mediated regulation of pancreatic β cell mass. Stem cell reports. 2016; 7(1):95–109.

65. Rorsman P, Huising MO. The somatostatinsecreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol. 2018; 14(7):404–414.

66. Hermansen K, Lindskog S, Ahrén B. Stimulation of somatostatin secretion by 3-O-methylglucose in the perfused dog pancreas. Int J Pancreatol. 1996; 20(2):103–107.

67. Adriaenssens AE, Svendsen B, Lam BY et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia. 2016; 59(10):21562165.

68. Patel YC. Somatostatin and its receptor family. Frontiers in Neuroendocrinology. 1999; 20(3):157–198.

69. Braun M, Ramracheya R, Bengtsson M et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes. 2010; 59(7):1694–1701.

70. Briant LJB, Reinbothe TM, Spiliotis I et al. δ-cells and β-cells are electrically coupled and regulate α-cell activity via somatostatin. J Physiol. 2018; 596(2):197–215.

71. Braun M. The somatostatin receptor in human pancreatic β-cells. Vitamins & Hormones. 2014; 95:165–193.


Рецензия

Для цитирования:


Перминова А.А. Патофизиологические и морфологические аспекты врожденного гиперинсулинизма (обзор литературы). Трансляционная медицина. 2020;7(2):12-20. https://doi.org/10.18705/2311-4495-2020-7-2-12-20

For citation:


Perminova A.A. Pathophysiological and morphological aspects of congenital hyperinsulinism. Review. Translational Medicine. 2020;7(2):12-20. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-2-12-20

Просмотров: 1152


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)