Preview

Трансляционная медицина

Расширенный поиск

Методы подбора in vitro химиопрепаратов для индивидуальной химиотерапии злокачественных новообразований пациентов

https://doi.org/10.18705/2311-4495-2018-5-3-45-65

Аннотация

В обзоре рассматриваются методы подбора химио- и биопрепаратов, их комбинаций с использованием 2D и 3D моделей культур клеток для прогнозирования персонифицированного ответа пациентов со злокачественными новообразованиями (рак яичников, желудка, кишечника, легкого, молочной, поджелудочной желез, опухоли головы и шеи) на химиотерапию. Приводятся показатели эффективности (чувствительность, специфичность, пролонгирование общей и безрецидивной выживаемости) методов оценки химиочувствительности на культурах опухолевых клеток при сравнении их с эффективностью химиотерапии пациентов. В статье освещаются преимущества и недостатки описываемых методов и перспективы их дальнейшего применения в клинической практике.

Об авторах

А. Н. Чернов
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Россия

Чернов Александр Николаевич - научный сотрудник отдела микробиологии, клеточных технологий и молекулярной биологии Центра доклинических и трансляционный исследований Института экспериментальной медицины.

Ул. Аккуратова, д. 2, Санкт-Петербург, 197341


Конфликт интересов:

Отсутствие потенциального конфликта интересов



Е. П. Баранцевич
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Россия

Баранцевич Елена Петровна - доктор медицинских наук, заведующая НИО микробиологии.

Ул. Аккуратова, д. 2, Санкт-Петербург, 197341


Конфликт интересов:

Отсутствие потенциального конфликта интересов



В. Н. Калюнов
ГНУ Институт физиологии НАН Беларуси
Беларусь

Калюнов Владимир Николаевич – доктор биологических наук, профессор, главный научный сотрудник лаборатории нейрофизиологии.

Минск


Конфликт интересов:

Отсутствие потенциального конфликта интересов



М. М. Галагудза
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Россия

Галагудза Михаил Михайлович - доктор медицинских наук, член-корреспондент РАН, директор Института экспериментальной медицины.

Ул. Аккуратова, д. 2, Санкт-Петербург, 197341


Конфликт интересов:

Отсутствие потенциального конфликта интересов



Список литературы

1. Мерабишвили В. М. Онкологическая статистика (традиционные методы, новые информационные технологии): Руководство для врачей. Издание второе, дополненное. Часть I. СПб: Коста, 2015. с. 223.

2. International agency for research of cancer (Globocan) [Electronic resource]: The World of Health Organization, 2012. — Mode of access: http: www.globocan.iarc.fr. (23.03.2018).

3. World health organization [Electronic resource]: World health organization, 2017. Mode of access: http://www.who.int/mediacentre/factsheets/fs297/en. (25.04.2018).

4. Злокачественные новообразования в России в 2015 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: МНИОИ им. П.А. Герцена. 2017. с. 250.

5. Chekhun VF. From System biology of cancer to methodology of personalized treatment. Oncology. 2012; 14 (2): 84−88. In Russian. [Чехун В. Ф. От системной биологии рака до методологии персонализированного лечения. Онкология. 2012; 14 (2): 84−88].

6. Oktay MH, Hui P. Molecular pathology as the driving force for personalized oncology. Expert Rev. Mol. Diagnostics. 2012; 12: 811−813.

7. Strese S, Fryknäs M, Larsson R. et al. Effects of hypoxia on human cancer cell line chemosensitivity. BMC Cancer. 2013; 13: 331.

8. Alonso K. Human tumor stem cell assay. A prospective clinical trial. Cancer. 1984; 54: 2475–2479.

9. Broder GR, Birtwell SW, Hagel G, et al. Multiplex bioassays using a suspension array platform; towards the high throughput screening of drugs targeting cancer stem cells. In: 4-th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2010): Groningen, The Netherlands, San Diego, Calif, Red Hook, NY: Chemical and Biological Microsystems Society; Printed from e-media with permission by Curran Associates Inc, 2010; 185–1387.

10. Khoo SK, Hurst T, Webb MJ, et al. Short-term in vitro chemosensitivity testing of tumours of the ovary, cervix and uterus. Measurement of DNA metabolism by 3H-thymidine incorporation. Aust N Z J. Obstet. Gynaecol. 1986; 26: 288–294.

11. Свирновский А.И. Персонализация терапии лейкозов: роль некоторых лабораторных технологий. Мед. новости. 2013; 9: 6–11.

12. Lv SQ, Kim YH, Giulio F, et al. Genetic alterations in microRNAs in medulloblastomas. Brain Pathol. 2012; 22: 230–239.

13. Ferriss JS, Rice LW. The role of in vitro directed chemotherapy in epithelial ovarian cancer. Reviews in Obstetrics and Gynecology. 2010; 3: 49−54.

14. Pastwa E, Poplawski T, Lewandowska U, et al. Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int. J. Biochem. Cell Biol. 2014; 53: 423−431.

15. Yung WK. In vitro chemosensitivity testing and its clinical application in human gliomas. Neurosurg. Rev. 1989; 12: 197–203.

16. Galderisi F, Stork L, Li J, Mori M, et al. Flow cytometric chemosensitivity assay as a predictive tool of early clinical response in acute lymphoblastic leukemia. Pediatr. Blood Cancer. 2009; 53: 543−550.

17. Zhai L, Li S, Li X. et al. The nuclear expression of poly (ADP-ribose) polymerase-1 (PARP1) in invasive primary breast tumors is associated with chemotherapy sensitivity. Pathol. Res. Pract. 2015; 211: 130−137.

18. Mehta RS, Bornstein R, Yu IR, et al. Breast cancer survival and in vitro tumour response in the extreme drug resistance assay. Breast Cancer Res. Treat. 2001; 66: 225– 237.

19. Tiersten AD, Moon J, Smith HO, et al. Chemotherapy resistance as a predictor of progression-free survival in ovarian cancer patients treated with neoadjuvant chemotherapy and surgical cytoreduction followed by intraperitoneal chemotherapy: a Southwest Oncology Group Study. Oncology. 2009; 77: 395–399.

20. Lee JH, Um JW, Lee JH, et al. Can immunohistochemistry of multidrug-resistant proteins replace the histoculture drug response assay in colorectal adenocarcinomas? Hepatogastroenterology. 2012; 59: 1075−1078.

21. Lee SW, Kim YM, Kim MB, et al. In vitro chemosensitivity using the histoculture drug response assay in human epithelial ovarian cancer. Acta Medica Okayama. 2012; 66: 271−277.

22. Donnadieu J, Lachaier E, Peria M, et al. Shortterm culture of tumour slices reveals the heterogeneous sensitivityof human head and neck squamous cell carcinoma to targeted therapies. BMC Cancer. 2016; 16: 273.

23. Baker FL, Spitzer G, Ajani JA, et al. Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using celladhesive matrix and supplemented medium. Cancer Res. 1986; 46: 1263–1274.

24. Elprana D, Schwachöfer J, Kuijpers W, et al. Cytotoxic drug sensitivity of squamous cell carcinoma as predicted by an in vitro testing model. Anticancer Res. 1989; 9: 1089–1094.

25. Strickland SA, Raptis A, Hallquist A. Correlation of the microculture-kinetic drug-induced apoptosis assay with patient outcomes in initial treatment of adult acute myelocytic leukemia. Leuk. Lymph. 2013; 54: 528−534.

26. Hultman B, Mahteme H, Sundbom M, et al. Benchmarking of gastric cancer sensitivity to anti-cancer drugs ex vivo as a basis for drug selection in systemic and intraperitoneal therapy. J. Exp. Clin. Cancer Res. 2014; 33: 110.

27. Skehan P, Storeng R, Scudiero D. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990; 82: 1107−1112.

28. Nagourney RA. Ex vivo programmed cell death and the prediction of response to chemotherapy. Current Treat. in Options Oncol. 2006; 7: 103−110.

29. Shen W, Hu J-A, Zheng J-Sh. Mechanism of temozolomide-induced antitumor effects on glioma cells. J. of Intern. Medical Res. 2014; 42: 164–172.

30. Zhao Z, He H, Wang C, et al. Downregulation of Id2 increases chemosensitivity of glioma. Tumour Biol. 2015; 36: 4189−4196.

31. Liu Z, Yang W, Long G, et al. Trace elements and chemotherapy sensitivity. Biol. Trace Elem. Res. 2016; 173: 283–290.

32. von Hoff DD, Sandbach JF, Clark GM, et al. Selection of cancer chemotherapy for a patient by an in vitro assay versus a clinician. J. Natl. Cancer Inst. 1990; 82: 110–116.

33. Puck TT, Marcus PI, Cieciura SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J. Exp. Med. 1956; 103: 273–283.

34. Hamburger AW, Salmon SE. Primary bioassay of human tumour stem cells. Science. 1977; 197: 461–463.

35. von Hoff DD, Clark GM, Stogdill BJ, et al. Prospective clinical trial of a human tumor cloning system. Cancer Res. 1983; 43: 1926–1931.

36. Weisenthal LM, Lippman ME. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep. 1985; 69: 615–632.

37. Wolff JE, Trilling T, Mölenkamp G, et al. Chemosensitivity of glioma cells in vitro: a metaanalysis. J. Cancer Res. Clin. Oncol. 1999; 125: 481–486.

38. Fiebig HH, Maier A, Burger AM. Clonogenic assay with established human tumour xenografts. Eur. J. Cancer. 2004; 40: 802–820.

39. Salom E, Penalver M, Homesley H, et al. Correlation of pretreatment drug induced apoptosis in ovarian cancer cells with patient survival and clinical response. J. Transl. Med. 2012; 10: 162.

40. Miyazaki R, Anayama T, Hirohashi K, et al. In vitro drug sensitivity tests to predict molecular target drug responses in surgically resected lung cancer. PLoS One. 2016; 11: e0152665.

41. Maurer HR, Ali-Osman F. Tumour stem cell cloning in agar-containing capillaries. Naturwissenschaften. 1981; 68: 381–383.

42. D’Arcangelo M, Todaro M, Salvini J, et al. Cancer stem cells sensitivity assay (STELLA) in patients with advanced lung and colorectal cancer: a feasibility study. PLoS One. 2015; 10: e0125037.

43. Kirkpatrick DL, Duke M, Goh TS. Chemosensitivity testing of fresh human leukemia cells using both a dye exclusion assay and a tetrazolium dye (MTT) assay. Leuk. Res. 1990; 14: 459−466.

44. Bosanquet AG, Bell PB, Burlton AR, et al. Correlation of bcl-2 with P-glycoprotein expression in chronic lymphocytic leukaemia and other haematological neoplasms but of neither marker with ex vivo chemosensitivity or patient survival. Leuk. Lymphoma. 1996; 24: 141−147.

45. Weisenthal LM, Marsden JA, Dill PL, Macaluso CK. A novel dye exclusion method for testing in vitro chemosensitivity of human tumours. Cancer Res. 1983; 43: 749–757.

46. Champion AR, Hanson JA, Venables SE, et al. Determination of radiosensitivity in established and primary squamous cell carcinoma cultures using the micronucleus assay. Eur. J. Cancer. 1997; 33: 453–462.

47. Udelnow A, Schönfęlder M, Würl P, et al. In vitro chemosensitivity assay guided chemotherapy is associated with prolonged overall survival in cancer patients. Pol. Przegland Chirurg. 2013; 85: 340−347.

48. Ge WQ, Pu JX, Zheng SY. Clinical application of the adenosine triphosphate-based response assay in intravesical chemotherapy for superficial bladder cancer. Asian Pac. J. Cancer Prev. 2012; 13: 689– 692.

49. Hetland TE, Kærn J, Skrede M, et al. Predicting platinum resistance in primary advanced ovarian cancer patients with an in vitro resistance index. Cancer Chemother. Pharmacol. 2012; 69: 1307−1314.

50. Hur H, Kim NK, Min BS, et al. Can a biomarkerbased scoring system predict pathologic complete response after preoperative chemoradiotherapy for rectal cancer? Dis. Colon Rectum. 2014; 57: 592−601.

51. Linz U, Ulus B, Neuloh G, et al. Can in-vitro chemoresponse assays help find new treatment regimens for malignant gliomas? Anticancer Drugs. 2014; 25: 375−384.

52. Kwon HY, Kim IK, Kang J, et al. In vitro adenosine triphosphate-based chemotherapy response assay (ATPCRA) as a predictor of clinical response to fluorouracilbased adjuvant chemotherapy in stage II colorectal cancer. Cancer Res. Treat. 2016; 48: 970−977.

53. Park JS, Kim JK, Yoon DS. Correlation of early recurrence with in vitro adenosine triphosphate based chemotherapy response assay in pancreas cancer with postoperative gemcitabine chemotherapy. J. Clin. Lab. Anal. 2016; 30: 804–810.

54. Bosserman L, Prendergast F, Herbst R, et al. The microculture-kinetic (MiCK) assay: the role of a druginduced apoptosis assay in drug development and clinical care. Cancer Res. 2012; 72: 3901−3905.

55. Yokosuka T, Goto H, Fujii H, et al. Flow cytometric chemosensitivity assay using JC-1, a sensor of mitochondrial transmembrane potential, in acute leukemia. Cancer Chemother. Pharmacol. 2013; 72: 1335−1342.

56. Avelar-Freitas BA, Almeida VG, Pinto MC, et al. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res. 2014; 47: 307−315.

57. Mathew ST, Johansson P, Gao Y, et al. A flow cytometry assay that measures cellular sensitivity to DNA-damaging agents, customized for clinical routine laboratories. Clin. Biochem. 2016; 49: 566–572.

58. Rogalińska M, Błoński JZ, Góralski P, et al. Relationship between in vitro drug sensitivity and clinical response of patients to treatment in chronic lymphocytic leukemia. Int. J. Oncol. 2015; 46: 1259–1267.

59. Higashiyama M, Okami J, Maeda J, et al. Differences in chemosensitivity between primary and paired metastatic lung cancer tissues: in vitro analysis based on the collagen gel droplet embedded culture drug test (CD-DST). J. Thorac. Dis. 2012; 4: 40–47.

60. Takebayashi K, Mekata E, Sonoda H, et al. Clinical potential of the anticancer drug sensitivity test for patients with synchronous stage IV colorectal cancer. Cancer Chemother. Pharmacol. 2013; 72: 217–222.

61. Sakuma K, Tanaka A, Mataga I. Collagen gel droplet-embedded culture drugsensitivity testing in squamous cell carcinoma cell lines derived from human oral cancers: Optimal contact concentrations of cisplatin and fluorouracil. Oncol. Lett. 2016; 12: 4643−4650.

62. Keshelava N, Frgala T, Krejsa J, et al. DIMSCAN: a microcomputer fluorescence-based cytotoxicity assay for preclinical testing of combination chemotherapy. Methods Mol. Med. 2005; 110: 139−153.

63. Sylvan SE, Skribek H, Norin S, et al. Sensitivity of chronic lymphocytic leukemia cells to small targeted therapeutic molecules: an in vitro comparative study. Exp. Hematol. 2016; 44: 38–49.

64. Suchy SL, Hancher LM, Wang D, et al. Chemoresponse assay for evaluating response to sunitinib in primary cultures of breast cancer. Cancer Biol. Ther. 2011; 11: 1059−1064.

65. Bhagwandin S, Naffouje S, Salti G. Utility of сhemoresponse assay in patients undergoing cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 2015; 22: 2573–2577.

66. Fischer-Fodor E, Moldovan N, Virag P, et al. The CellScan technology for in vitro studies on novel platinum complexes with organoarsenic ligands. Dalton Trans. 2008; 45: 6393−400.

67. Giasson J, Chen Y. Mysterious stones. Clin. Chem. 2014; 60: 274−275.

68. Chou CW, Wang CC, Wu CP, et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1. Neurooncol. 2012; 14: 1227−1238.

69. Tsaousis KT, Kopsachilis N, Tsinopoulos IT, et al. Time-dependent morphological alterations and viability of cultured human trabecular cells after exposure to Trypan blue. Clin. Exp. Ophthalmol. 2013; 41: 484−490.

70. Howard CM, Valluri J, Alberico A, et al. Analysis of chemopredictive assay for targeting cancer stem cells in glioblastoma patients. Transl. Oncol. 2017; 2: 241−254.

71. Ruiz C, Kustermann S, Pietilae E, et al. Culture and drug profiling of patient derived malignant pleural effusions for personalized cancer medicine. PLoS One. 2016; 11: e0160807.

72. Mourelatos D. Sister chromatid exchange assay as a predictor of tumor chemoresponse. Mutat. Res. Genet. Toxicol. Environ Mutagen. 2016; 803−804: 1−12.

73. Weiss A, Berndsen RH, Ding X, et al. A streamlined search technology for identification of synergistic drug combinations. Sci Rep. 2015; 5: 14508.

74. Naipal KA, Verkaik NS, Sánchez H, et al. Tumor slice culture system to assess drug response of primary breast cancer. BMC Cancer. 2016; 16: 78.

75. Wang MS, Luo Z, Nitin N. Rapid assessment of drug response in cancer cells using microwell array and molecular imaging. Anal. Bioanal. Chem. 2014; 406: 4195–4206.

76. Roscilli G, De Vitis C, Ferrara FF, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J. Transl. Med. 2016; 14: 61.

77. Yu M, Bardia A, Aceto N, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014; 345: 216−220.

78. Karekla E, Liao WJ, Sharp B, et al. Ex vivo explant cultures of non-small cell lung carcinoma enable evaluation of primary tumor responses to anticancer therapy. Cancer Res. 2017; 77: 2029−2039.

79. Yamazoe H, Hagihara Y, Kobayashi H. Multicomponent coculture system of cancer cells and two types of stromal cells for in vitro evaluation of anticancer drugs. Tissue Eng. Part C Methods. 2016; 22: 20−29.

80. van de Wetering, Francies HE, Bounova G, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015; 161: 933–945.

81. Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials. 2013; 34: 4109−4117.

82. Nagourney RA, Blitzer JB, Shuman RL, et al. Functional profiling to select chemotherapy in untreated, advanced or metastatic non-small cell lung cancer. Anticancer Res. 2012; 32: 4453−4460.

83. Kiyohara Y, Yoshino K, Kubota S, et al. Drug screening and grouping by sensitivity with a panel of primary cultured cancer spheroids derived from endometrial cancer. Cancer Sci. 2016; 107: 452−460.

84. Цой А.М., Зайцева-Зотова Д.С., Эдельвейс Э.Ф. и др. Микрокапсулированные мультиклеточные опухолевые сфероиды: получение и использование в качестве модели in vitro для тестирования лекарств. Биомед. химия. 2010; 56(6): 674–685.

85. Leighton JA. Sponge matrix method for tissue culture; formation of organized aggregates of cells in vitro. J. Natl. Cancer Inst. 1951; 12: 545–561.

86. Sherwin RP, Richters A, Yellin AE, et al. Histoculture of human breast cancers. J. Surg. Oncol. 1980; 13: 9–20.

87. Kato R, Hasegawa K, Achiwa Y, et al. Predicting nedaplatin sensitivity of cervical cancer using the histoculture drug response assay. Eur. J. Gynaecol. Oncol. 2011; 32: 381−386.

88. Su Y. Cancer chemosensitivity testing review. J. Cancer Ther. 2014; 5: 672−679.

89. Mas C, Boda B, Caul Futy M, et al. Establishment of a tumour-stroma airway model (OncoCilAir) to accelerate the development of human therapies against lung cancer. Altern. Lab. Anim. 2016; 44: 479−485.

90. Hagemann J, Jacobi C, Hahn M, et al. Spheroidbased 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer. Anticancer Res. 2017; 37: 2201−2210.

91. Pozzi V, Sartini D, Rocchetti R, et al. Identification and characterization of cancer stem cells from head and neck squamous cell carcinoma cell lines. Cell. Physiol. Biochem. 2015; 36: 784–798.

92. Horizon 2020 newsroom editor. Better combination therapies for colorectal cancer patients. http://ec.europa.eu/programmes/horizon2020/en/news/better-combinationtherapies-colorectal-cancer-patients. (14 Sep 2015).

93. Saunders JH, Onion D, Collier P, et al. Individual patient oesophageal cancer 3D models for tailored treatment. Oncotarget. 2017; 8: 24224−24236.

94. Majumder B, Baraneedharan U, Thiyagarajan S, et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat. Commun. 2015; Vol. 6: 6169.

95. Hattersley SM, Sylvester DC, Dyer CE, et al. A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs. Ann. Biomed. Eng. 2012; 40: 1277–1288.

96. Matsuo K, Bond VK, Im DD, et al. Prediction of chemotherapy response with platinum and taxane in the advanced stage of ovarian and uterine carcinosarcoma: a clinical implication of in vitro drug resistance assay. Am. J. Clin. Oncol. 2010; 33: 358–363.

97. Arienti C, Tesei A, Verdecchia GM, et al. Role of conventional chemosensitivity test and tissue biomarker expression in predicting response to treatment of peritoneal carcinomatosis from colon cancer. Clin. Colorectal Cancer. 2013; 12: 122–127.

98. . Zhang J, Li H. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate tumor chemosensitivity assay. Oncol. Lett. 2015; 9: 2374–2380.

99. Gwe Ahn S, Ah Lee S, Woo LH, et al. In vitro chemoresponse assay based on the intrinsic subtypes in breast cancer. Jpn. J. Clin. Oncol. 2014; 44: 624–631.

100. Neubauer H, Stefanova M, Solomayer E, et al. Predicting resistance to platinum-containing chemotherapy with the ATP tumor chemosensitivity assay in primary ovarian cancer. Anticancer Res. 2008; 28: 949–955.

101. Andreotti PE, Cree IA, Kurbacher CM, et al. Chemosensitivity testing of human tumours using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 1995; 55: 5276–5282.

102. Kim JH, Lee KW, Kim YH, et al. Individualized tumor response testing for prediction of response to paclitaxel and cisplatin chemotherapy in patients with advanced gastric cancer. J. Korean Med. Sci. 2010; .25: 684–690.

103. Kitten CM, von Hoff DD, Bennett EV Jr, et al. The human tumor clonogenic assay in the treatment of patients with lung cancer. Ann. Thorac. Surg. 1983; 36: 408–410.

104. Bertelsen CA, Sondak VK, Mann BD, et al. Chemosensitivity testing of human solid tumors. A review of 1582 assays with 258 clinical correlations. Cancer. 1984; 53: 1240–1245.

105. Higashiyama M, Oda K, Okami J, et al. In vitro chemosensitivity test using the collagen gel droplet embedded culture drug test (CD-DST) for malignant pleural mesothelioma: Possibility of clinical application. Ann. Thorac. Cardiovasc. Surg. 2008; 14: 355–362.

106. Kawamura M, Gika M, Abiko T, et al. Clinical evaluation of chemosensitivity testing for patients with unresectable non-small cell lung cancer (NSCLC) using collagen gel droplet embedded culture drug sensitivity test (CD-DST). Cancer Chemother. Pharmacol. 2007; 59: 507–513.

107. Kobayashi H, Tanisaka K, Doi O, et al. An in vitro chemosensitivity test for solid human tumors using collagen gel droplet embedded cultures. Int. J. Oncol. 1997; 11: 449– 455.

108. Tian C, Sargent DJ, Krivak TC, et. al. Evaluation of a chemoresponse assay as a predictive marker in the treatment of recurrent ovarian cancer: Further analysis of a prospective study. Br. J. Cancer. 2014; 111: 843–850.

109. Grigsby PW, Zighelboim I, Powell MA, et al. In vitro chemoresponse to cisplatin and outcomes in cervical cancer. Gynecol. Oncol. 2013; 130: 188–191.

110. Herzog TJ, Krivak TC, Fader AN, et al. Chemosensitivity testing with ChemoFx and overall survival in primary ovarian cancer. Am. J. Obstet. Gynecol. 2010; 203: e1–6.

111. von Heideman A, Tholander B, Grundmark B, et al. Chemotherapeutic drug sensitivity of primary cultures of epithelial ovarian cancer cells from patients in relation to tumour characteristics and therapeutic outcome. Acta Oncol. 2014; 53: 242–250.

112. Wu B, Zhu JS, Zhang Y, et al. Predictive value of MTT assay as an in vitro chemosensitivity testing for gastric cancer: one institution’s experience. World J. Gastroenterol. 2008; 14: 3064–3068.

113. Kabeshima Y, Kubota T, Watanabe M, et al. Clinical usefulness of chemosensitivity test for advanced colorectal cancer. Anticancer Res. 2002; 22: 3033–3037.

114. Xu X, Dai H, Zhao Y. et al. In vitro chemosensitivity assay of ascites in epithelial ovarian cancer. Eur J. Gynaecol. Oncol. 2013; 34: 559–564.

115. Taylor CG, Sargent JM, Elgie AW, et al. Chemosensitivity testing predicts survival in ovarian cancer. Eur. J. Gynaecol. Oncol. 2001; 22: 278–282.

116. Jung PS, Kim DY, Kim MB, et al. Progressionfree survival is accurately predicted in patients treated with chemotherapy for epithelial ovarian cancer by the histoculture drug response assay in a prospective correlative clinical trial at a single institution. Anticancer Res. 2013; 33: 1029–1034.

117. Yoon YS, Kim CW, Roh SA, et al. Applicability of histoculture drug response assays in colorectal cancer chemotherapy. Anticancer Res. 2012; 32: 3581–3586.

118. Pathak KA, Juvekar AS, Radhakrishnan DK, et al. In vitro chemosensitivity profile of oral squamous cell cancer and its correlation with clinical response to chemotherapy. Indian J. Cancer. 2007; 44: 142–146.

119. Bounaix Morand du Puch C, Nouaille M, Giraud S, et al. Chemotherapy outcome predictive effectiveness by the Oncogramme: Pilot trial on stage-IV colorectal cancer. J. Transl. Med. 2016; 14: 10.

120. Halfter K, Ditsch N, Kolberg HC, et al. Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy — The SpheroNEO study. BMC Cancer. 2015; 15: 519.

121. Kodera Y, Ito S, Fujiwara M, et al. In vitro chemosensitivity test to predict chemosensitivity for paclitaxel, using human gastric carcinoma tissues. Int. J. Clin. Oncol. 2006; 11: 449–453.

122. Jung PS, Kim DY, Kim MB, et al. Progressionfree survival is accurately predicted in patients treated with chemotherapy for epithelial ovarian cancer by the histoculture drug response assay in a prospective correlative clinical trial at a single institution. Anticancer Res. 2013; 33: 1029–1034.

123. Furukawa T, Kubota T, Hoffman RM. Clinical applications of the histoculture drug response assay. Clin Cancer Res. 1995; 1: 305–311.

124. Blumenthal RD, Goldenberg DM. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol. Biotechnol. 2007; 35: 185–197.

125. Weisenthal LM, Nygren P. Current status of cell culture drug resistance testing (CCDRT). 2002. Available from: https://www.researchgate.net/publication/237347352. (08.12.2015).

126. Kubota T, Weisenthal L. Chemotherapy sensitivity and resistance testing: to be “standard” or to be individualized, that is the question. Gastric. Cancer. 2006; 9: 82–87.

127. Volm M, Efferth T. Prediction of cancer drug resistance and implications for personalized medicine. Front Oncol. 2015; 5: 282.

128. Peng TC, Wang CC, Kao TW. et al. Relationship between hyperuricemia and lipid profiles in US adults. Biomed. Res. Int. 2015; 2015: 127596.

129. Chen F, Cushion MT. Use of an ATP bioluminescent assay to evaluate viability of Pneumocystis carinii from rats. J. Clin. Microbiol. 1994; 32: 2791–2800.

130. Huh WK, Cibull M, Gallion HH, et al. Consistency of in vitro chemoresponse assay results and population clinical response rates among women with endometrial carcinoma. Int. J. Gynecol. Cancer. 2011; 21: 494−499.

131. Burstein HJ, Mangu PB, Somerfield MR, et al. American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays. J. Clin. Oncol. 2011; 29: 3328−3330.


Рецензия

Для цитирования:


Чернов А.Н., Баранцевич Е.П., Калюнов В.Н., Галагудза М.М. Методы подбора in vitro химиопрепаратов для индивидуальной химиотерапии злокачественных новообразований пациентов. Трансляционная медицина. 2018;5(3):45-65. https://doi.org/10.18705/2311-4495-2018-5-3-45-65

For citation:


Chernov A.N., Barantsevich E.P., Kalunov V.N., Galagudza M.M. The methods of in vitro selection of chemotherapeutic druds for individual chemotherapy of maligant tumors in patinets. Translational Medicine. 2018;5(3):45-65. (In Russ.) https://doi.org/10.18705/2311-4495-2018-5-3-45-65

Просмотров: 1483


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)