Preview

Translational Medicine

Advanced search

PURINERGIC SIGNALING RECEPTORS EXPRESSION ON PERIPHERAL T-LYMPHOCYTES OF HEALTHY DONORS

https://doi.org/10.18705/2311-4495-2017-4-5-46-60

Abstract

The components of the purinergic system participate in the function regulation of various immune system cells as well as in the development of an effective response aimed to extracellular and intracellular pathogens, altered and/or dead cells elimination. Despite the active research of purinergic regulation in the pathogenesis of many diseases, the level of spontaneous expression of such participants of purinergic signaling as CD39 and CD73 on the T-lymphocytes subpopulation of healthy donors has been little studied. The aim of the present study was to determine the expression of CD39 and CD73 on the peripheral T-lymphocytes subpopulations of healthy donors, and to identify possible changes related to the sex and age of the subjects. Materials and methods. The study included 65 healthy donors 25-61 years old. Multicolor fl ow cytometry was used to identify T-helpers (Th), T-cytotoxic (Tcyt), T-regulatory (Treg) cells and their subpopulations — Naïve (CD45R0–CD62L+), Central memory (CM) (CD45R0+CD62L+), Effector memory (EM) (CD45R0+CD62L–) and terminally differentiated CD45RA-positive effector cells (TEMRA) (CD45R0–CD62L–). Additionally CD39 and CD73 expression levels were detected. Results. The levels of CD73+ EM (p = 0,027) and TEMRA (p = 0,006) Tcyt in female subjects were signifi cantly higher. Positive correlations with age were found in CD39+ Naïve Th and Tcyt and EM Tcyt. Negative correlations were detected with CD73+ Naïve and CM Tcyt. Assumptions that the number of CD73 + cells decreased in the direction of Naive-CM-EM-TEMRA in cytotoxic T-lymphocytes were confi rmed. Conclusions. The results confi rm the assumption of of sex and age infl uence on the expression of CD39 and CD73 on the T-lymphocytes subpopulations of healthy donors

About the Authors

A. S. Golovkin
National Almazov Medical Research Centre
Russian Federation
MD, PhD, Principle investigator, institute of molecular biology and genetics, National Almazov medical research Centre;


M. K. Serebryakova
Institution of experimental medicine
Russian Federation
Research Associate, immunology department, Institution of experimental medicine;


E. V. Zhiduleva
National Almazov Medical Research Centre
Russian Federation
MD, PhD student, National Almazov medical research Centre;


P. M. Murtazalieva
National Almazov Medical Research Centre
Russian Federation
MD, PhD student, National Almazov medical research Centre;


V. A. Titov
National Almazov Medical Research Centre
Russian Federation
MD, PhD student, National Almazov medical research Centre;


O. B. Irtuga
National Almazov Medical Research Centre
Russian Federation
MD, PhD, Senior Research Associate, National Almazov medical research Centre;


O. M. Moiseeva
National Almazov Medical Research Centre
Russian Federation
MD, PhD, professor, Head of the Research Department of Noncoronary Heart Disease, National Almazov medical research Centre;


I. I. Krobinec
Russian research institute of hematology and transfusiology FMBA Russia
Russian Federation
PhD, Senior Research Associate, Russian research institute of hematology and transfusiology FMBA Russia;


I. V. Kudryavtsev
Institution of experimental medicine; Pavlov First Saint Petersburg medical university
Russian Federation
PhD, Senior Research Associate, immunology department, Institution of experimental medicine; assistant professor, department of immunology, Pavlov First Saint Petersburg medical university.


References

1. Faas MM, Sáez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Molecular Aspects of Medicine. 2017; Vol. 55: 9–19.

2. Zhao H, Bo C, Kang Y, Li H. What else can CD39 tell us? Front Immunol. 2017; 8: 1–10.

3. Burnstock G. Purinergic signalling. Br J Pharmacol. 2009;147(S1):S172–81.

4. Serebryanay N.B. Nucleotides as regulators of the immune response. Immunology. 2010; 31 (5): 73–280. In Russian [Серебряная Н.Б. Нуклеотиды как регуляторы иммунного ответа. Иммунология. 2010; 31 (5): 273–280].

5. Barletta KE, Ley K, Mehrad B. Regulation of Neutrophil Function by Adenosine. Arterioscler Thromb Vasc Biol. 2012; 32: 856–864

6. Koscsó B, Csóka B, Selmeczy Z, et al. Adenosine Augments IL-10 Production by Microglial Cells through an A2B Adenosine Receptor-Mediated Process. J Immunol. 2012; 188 (1): 445–453.

7. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and infl ammation. Trends Mol Med. 2013; 19 (6): 355–367.

8. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204 (6): 1257–1265.

9. Junger WG. Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 2011; 11 (3): 201–212.

10. Trabanelli S, Očadlíková D, Gulinelli S, et al. Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. J Immunol. 2012; 189 (3): 1303–1310.

11. Csóka B, Himer L, Selmeczy Z, et al. Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J. 2008; 22 (10): 3491–3499.

12. Kudryavtsev IV. Memory T cells: major populations and stages of differentiation. Russian immunology journal. 2014;8 (4(17)):947–964. In Russian [Кудрявцев И.В. Т-клетки памяти: основные популяции и стадии дифференцировки. Российский иммунологический журнал. 2014;8(4 (17)):947–964].

13. Kudryavtsev IV, Borisov AG, Krobinets II, et al. Multicolor fl ow cytometric analysis of cytotoxic T-cells subsets. Medical immunology (Russia) = Meditsinskaya Immunologiya. 2015; 17 (6): 525–538. In Russian [Кудрявцев, И.В., Борисов, А.Г., Кробинец, И.И., с соавт. Определение основных субпопуляций цитотоксических Т-лимфоцитов методом многоцветной проточной цитометрии. Медицинская иммунология. 2015; 17 (6): 525–538].

14. Fang F, Yu M, Cavanagh MM, et al. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals. Cell Rep. 2016; 14 (5): 1218–1231.

15. Khaidukov SV, Baidun LA, Zurochka AV, Totolyan Areg A. Standardized technology “study of peripheral lymphocytes subpopulations using fl ow cytometers-analyzers” (project). Medical immunology (Russia) = Meditsinskaya Immunologiya. 2012; 14 (3): 255–268. In Russian [Хайдуков С.В., Байдун, Л.А., Зурочка, А.В., Тотолян, Арег А. Стандартизованная технология «исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (проект). Медицинская иммунология. 2012; 14 (3): 255–268].

16. Kudryavtsev IV, Subbotovskaya AI. Application of six-color fl ow cytometric analysis for immune profi le monitoring. Medical immunology (Russia) = Meditsinskaya Immunologiya. 2015; 17 (1): 19–26. In Russian [Кудрявцев, И.В., Субботовская АИ. Опыт измерения параметров иммунного статуса с использованием шести-цветного цитофлуоримерического анализа. Медицинская иммунология. 2015; 17 (1): 19–26].

17. Mahnke Y., Roederer M. Optimizing a Multicolor Immunophenotyping Assay. Clin Lab Med. 2007; 27 (3): 469–485.

18. Garcia Santana CA, Tung JW, Gulnik S. Human treg cells are characterized by low/negative CD6 expression. Cytom Part A. 2014; 85 (10): 901–908.

19. Kudryavtsev IV, Savitsky VP. Multicolor analysis of the main subpopulations of T-helpers and cytotoxic T cells by fl ow cytometry. Russian journal of immunology. 2012; 6 (3 (1) (14): 94–97. In Russian [Кудрявцев, И.В., Савицкий В.П. Многоцветный анализ основных субпопуляций Т-хелперов и цитотоксических Т-клеток методом проточной цитофлуориметрии. Российский иммунологический журнал. 2012;6(3(1)(14):94–97].

20. Kudryavtsev IV, Elezov DC. Analysis of the main peripheral cytotoxic T-lymphocytes subpopulations based on the expression of CD27, CD28, CD45R0 and CD62L. Russian journal of immunology. 2013; 7 (16) (2–3 (1)): 57–61. In Russian [Кудрявцев И.В., Елезов Д.С. Анализ основных популяций цитотоксических Т-лимфоцитов периферической крови на основании уровня экспрессии CD27, CD28, CD45R0 и CD62L. Российский иммунологический журнал. 2013; 7 (16) (2–3 (1)): 57–61].

21. Barbarash L, Kudryavtsev I, Rutkovskaya N, Golovkin A. T Cell Response in Patients with Implanted Biological and Mechanical Prosthetic Heart Valves. Mediat infl amation. 2016; 2016 (Article ID 1937564): 12 pages.

22. Sokhonevich NA, Khaziakhmatova OG, Yurova KA, et al. Phenotypic characterization and functional features of memory T- And B-cells. Cell and tissue biology. 2015; 57 (5): 311–318. In Russian [Сохоневич, Н.А.; Хазиахматова, О.Г.; Юрова, К.А.; Шуплетова, В.В.; Литвинова ЛС. Фенотипическая характеристика и функциональные особенности Т- и В-клеток иммунной памяти. Цитология. 2015; 57 (5): 311–318].

23. Bono MR, Fernandez D, Flores-Santibez F, Rosemblatt M, Sauma D. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Lett. 2015; 589 (22): 3454–3460.

24. Gupta PK, Godec J, Wolski D, et al. CD39 Expression Identifi es Terminally Exhausted CD8+ T Cells. PLoS Pathog. 2015; 11 (10): 1–21.

25. Wen Z, Shimojima Y, Shirai T, et al. NADPH oxidase defi ciency underlies dysfunction of aged CD8+ Tregs. J Clin Invest. 2016; 126 (5): 1953–1967.

26. Boer MC, van Meijgaarden KE, Bastid J, et al. CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated human CD8 + CD39 + regulatory T cells. Eur J Immunol. 2013; 43 (7): 1925–1932. 27. Dianzani U, Redoglia V, Bragardo M, et al.

27. Co-stimulatory signal delivered by CD73 molecule to human CD45RAhiCD45ROlow (naive) CD8+ T lymphocytes. J Immunol. 1993; 151 (8): 3961–3970.

28. Kling L, Benck U, Breedijk A, et al. Changes in CD73, CD39 and CD26 expression on T-lymphocytes of ANCA-associated vasculitis patients suggest impairment in adenosine generation and turn-over. Sci Rep. 2017; 7 (1): 11683.

29. Moncrieffe H, Nistala K, Kamhieh Y, et al. High expression of the ectonucleotidase CD39 on T cells from the infl amed site identifi es two distinct populations, one regulatory and one memory T cell population. J Immunol. 2010; 185 (1): 134–143.

30. Zhou Q, Yan J, Wu Y, Sun X. Isolated CD39 Expression on CD4 + T Cells Denotes. Am J Transplant. 2009; 6 (2): 2303–2311.

31. Bai A, Moss A, Kokkotou E, et al. CD39 and CD161 Modulate Th17 Responses in Crohn’s Disease. J Immunol. 2014; 193 (7): 3366–3377.

32. Bai A, Robson S. Beyond ecto-nucleotidase: CD39 defi nes human Th17 cells with CD161. Purinergic Signal. 2015;11 (3): 317–319.

33. Mandapathil M, Hilldorfer B, Szczepanski MJ, et al. Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem. 2010; 285 (10): 7176–7186.

34. Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi -1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression. Immunity. 2012; 36 (3): 362–373.

35. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–1232.

36. Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol; 185 (4): 1993–1998.

37. Zhulai GA, Oleinik EK, Churov A V., et al. Signifi cance of Treg cellsfor adenosine-mediated immune supression in colorectal cancer. 2017; 19 (1): 89–94.

38. Fletcher JM, Lonergan R, Costelloe L, et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 2009; 183 (11): 7602–7610.

39. Tang Y, Jiang L, Zheng Y, Ni B, Wu Y. Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection. BMC Immunol. 2012; 13 (1): 17.


Review

For citations:


Golovkin A.S., Serebryakova M.K., Zhiduleva E.V., Murtazalieva P.M., Titov V.A., Irtuga O.B., Moiseeva O.M., Krobinec I.I., Kudryavtsev I.V. PURINERGIC SIGNALING RECEPTORS EXPRESSION ON PERIPHERAL T-LYMPHOCYTES OF HEALTHY DONORS. Translational Medicine. 2017;4(5):46-60. (In Russ.) https://doi.org/10.18705/2311-4495-2017-4-5-46-60

Views: 934


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)