Preview

Translational Medicine

Advanced search

MOLECULAR MECHANISMS OF BRUGADA SYNDOME SUBTYPE 1

https://doi.org/10.18705/2311-4495-2017-4-4-23-35

Abstract

Brugada syndrome is a rare hereditary arrhythmogenic disorder first described by Brugada brothers in 1992. Despite the large amount of clinical and experimental data, there is no complete understanding of genotype-phenotype relation in pathogenesis of the disease caused by missence mutations in SCN5A, which encodes the alpha-subunit of the major cardiac voltage-gated sodium channel Nav 1.5. The aim of this review is to summarize current knowledge on molecular, cellular and ionic mechanisms of the Brugada syndrome development. We focused on the clinical picture and physiological consequences of decreasing activity of Nav 1.5 and analyzed the impact of biophysical properties alterations on the pathological state. The mutation-specific influence of pharmacological agents and signalling proteins was described. 

About the Authors

A. K. Zaytseva
Almazov National Medical Research Centre; Saint Petersburg University
Russian Federation

young research fellow,

Akkuratova str. 2, Saint Petersburg, 197341



A. V. Karpushev
Almazov National Medical Research Centre
Russian Federation

PhD, senior research fellow, 

Saint Petersburg



E. N. Mikhaylov
Almazov National Medical Research Centre

Evgeniy N. Mikhaylov, PhD, MD, head of the laboratory of neuromodulation, 

Saint Petersburg



B. S. Zhorov
Almazov National Medical Research Centre; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

senior scientist;

Dr.Sc., prof., principal scientist,

Saint Petersburg



A. A. Kostareva
Almazov National Medical Research Centre

PhD, MD, head of the Institute of Molecular Biology and Genetics,

Saint Petersburg



References

1. Antzelevitch C, Brugada P, Brugada J et. al. Brugada Syndrome: From Cell to Bedside. Curr Probl Cardiol. 2005;6:2166–2171.

2. Brugada P, Brugada J Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome A multicenter report. J Am. Coll. Cardiol. 1992; 20:1391– 1396.

3. Antzelevitch C, Brugada P, Borggrefe M et. al. Brugada Syndrome: Report of the Second Consensus Conference: Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circ J.. 2005; 111:659–670.

4. Priori SG, Wilde AA, Horie M et. al. Executive Summary: HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes. Heart Rhythm. 2013; 10:e85–e108.

5. Miyazaki T, Mitamura H, Miyoshi S et. al. Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am. Coll. Cardiol. 27 1996;27:1061–1070.

6. Manohar S, Dahal BR, Gitler B, Fever-Induced Brugada Syndrome. J Investig. Med. high impact case reports. 2015; 3:1-4.

7. Peters CH, Abdelsayed M, Ruben PC, Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. Prog. Biophys. Mol. Biol. 2016; 120:77–88.

8. Keller DI., Rougier JS, Kucera JP et. al. Brugada syndrome and fever: Genetic and molecular characterization of patients carrying SCN5A mutations. CardiovasC Res. 2005; 67:510–519.

9. Gehi AK, Duong TD, Metz LD et. al. Risk Stratification of Individuals with the Brugada Electrocardiogram: A Meta-Analysis. J Cardiovasc. Electrophysiol. 2006; 17:577–583.

10. Nademanee K, Veerakul G, Nimmannit S et. al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men, Circ J. 1997; 96:2595–600.

11. Junttila MJ, Gonzalez M, Lizotte E et. al. Induced Brugada-Type Electrocardiogram, a Sign for Imminent Malignant Arrhythmias. Circ J. 2008; 117:1890–1893. 12. Donohue D, Tehrani F, Jamehdor R et. al. The prevalence of Brugada ECG in adult patients in a large university hospital in the western United States. Am. Heart Hosp. J. 2008; 6:48–50.

12. Sinner MF, Pfeufer A, Perz S et.al. Spontaneous Brugada electrocardiogram patterns are rare in the German general population: results from the KORA study, Europace. 2009; 11:1338–1344.

13. Matsuo K, Akahoshi M, Nakashima E et.al. The prevalence, incidence and prognostic value of the Brugadatype electrocardiogram: a population-based study of four decades. J. Am. Coll. Cardiol. 2001; 38:765–770.

14. Matsuo K, Kurita T, Inagaki M et.al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur. Heart J. 1999; 20:465–470.

15. Mizumaki K, Fujiki A, Tsuneda T et.al. Vagal Activity Modulates Spontaneous Augmentation of ST Elevation in the Daily Life of Patients with Brugada Syndrome. J. Cardiovasc. Electrophysiol. 2004; 15:667– 673.

16. Martini B, Nava A, Thiene G et.al.Ventricular fibrillation without apparent heart disease: description of six cases. Am. Heart J. 1989; 118:1203–1209.

17. Leoni AL, Gavillet B, Rougier JS et.al. Variable Na(v)15 protein expression from the wild-type allele correlates with the penetrance of cardiac conduction disease in the Scn5a(+/-) mouse model. PLoS One. 2010; 5:e9298.

18. Boukens BJ, Sylva M, de Gier-de Vries C et.al. Reduced sodium channel function unmasks residual embryonic slow conduction in the adult right ventricular outflow tract. Circ. Res. 2013; 113:137–141.

19. Schweizer PA, Fink T, Yampolsky P et.al. Generation and characterization of SCN5A loss-of-function mutant mice modeling human brugada syndrome. Eur. Heart J. 2014; 34:4556–4556.

20. Royer A, van Veen T, Le Bouter S et.al. Mouse model of SCN5A-linked hereditary Lenègre’s disease: agerelated conduction slowing and myocardial fibrosis. Circ J. 2005; 111:1738–1746.

21. Cohen SA Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle Presence in terminal intercalated disks. Circ J. 1996; 94:3083–3086.

22. Rhett JM, Gourdie RG The perinexus: a new feature of Cx43 gap junction organization. Heart Rhythm. 2012; 9:619–623.

23. Rhett JM, Veeraraghavan R, Poelzing S et.al. The perinexus: sign-post on the path to a new model of cardiac conduction? Trends Cardiovasc. Med. 2013; 23:222–228.

24. Agullo-Pascual E, Cerrone M, Delmar M Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett. 2014; 558:1322– 1330.

25. Veeraraghavan R, Poelzing S, Gourdie RG, Old cogs, new tricks: a scaffolding role for connexin43 and a junctional role for sodium channels? FEBS Lett. 2014; 558:1244–1248.

26. Veeraraghavan R, Gourdie RG, Poelzing S Mechanisms of cardiac conduction: a history of revisions. Am. J. Physiol. Heart Circ. Physiol. 2014; 306:H619-627.

27. Veeraraghavan R, Lin J,Hoeker GS et.al. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflugers Arch. 2015; 467:2093–2105.

28. George SA, Sciuto KJ, Lin J et.al. Extracellular sodium and potassium levels modulate cardiac conduction in mice heterozygous null for the Connexin43 gene. Pflugers Arch. 2015; 467:2287–2297.

29. Campuzano O, Fernández-FalguerasA, Iglesias A et.al. Brugada Syndrome and PKP2: Evidences and uncertainties. Int. J. Cardiol. 2016; 214:403–405.

30. Nademanee K, Raju H, de Noronha S V et.al. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome. J. Am. Coll. Cardiol. 2015; 66:1976–1986.

31. Nagase S, Kusano KF, Morita H et.al. Epicardial electrogram of the right ventricular outflow tract in patients with the Brugada syndrome: using the epicardial lead. J. Am. Coll. Cardiol. 2002; 39:1992–1995.

32. Tukkie R, Sogaard P, Vleugels J et.al. Delay in right ventricular activation contributes to Brugada syndrome. Circ J. 2004; 109:1272–1277.

33. Coronel R, Casini S, Koopmann TT et.al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circ J. 2005; 112:2769–2777.

34. Postema PG, van Dessel PFHM, de Bakker JMT et.al. Slow and discontinuous conduction conspire in Brugada syndrome: a right ventricular mapping and stimulation study. Circ. Arrhythm. Electrophysiol. 2008; 1:379–386.

35. Postema PG, van Dessel PFHM, Kors JA et.al. Local depolarization abnormalities are the dominant pathophysiologic mechanism for type 1 electrocardiogram in brugada syndrome a study of electrocardiograms, vectorcardiograms, and body surface potential maps during ajmaline provocation. J. Am. Coll. Cardiol. 2010; 55:789–797.

36. Lambiase PD, Ahmed AK, Ciaccio EJ et.al. Highdensity substrate mapping in Brugada syndrome: combined role of conduction and repolarization heterogeneities in arrhythmogenesis. Circ J. 2009; 120:106–117.

37. Nademanee K, Veerakul G, Chandanamattha P et.al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circ J. 2011; 123:1270–1279.

38. Ten Sande JN, Coronel R, Conrath CE et.al. ST-Segment Elevation and Fractionated Electrograms in Brugada Syndrome Patients Arise From the Same Structurally Abnormal Subepicardial RVOT Area but Have a Different Mechanism. Circ. Arrhythm. Electrophysiol. 2015; 8:1382–1392.

39. Zhang J, Sacher F, Hoffmayer K et.al. Cardiac electrophysiological substrate underlying the ECG phenotype and electrogram abnormalities in Brugada syndrome patients, Circ J. 2015; 131:1950–1959.

40. Brugada J, Pappone C, Berruezo A et.al. Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation. Circ. Arrhythmia Electrophysiol. 2015; 8:1373-1381.

41. Di Diego JM, Antzelevitch C Cellular basis for ST-segment changes observed during ischemia. J. Electrocardiol. 2003; 36:1–5.

42. Antzelevitch C, Oliva A Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. J. Intern. Med. 2006; 259:48–58.

43. Antzelevitch C. Brugada syndrome. Pacing Clin. Electrophysiol. 2006; 29:1130–1159.

44. Tsuboi M, Antzelevitch C Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm 2006; 3:328–335.

45. Sicouri S, Blazek J, Belardinelli L et.al. Electrophysiological characteristics of canine superior vena cava sleeve preparations: effect of ranolazine. Circ. Arrhythm. Electrophysiol. 2012; 5:371–379.

46. Yan GX., Antzelevitch C Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circ J. 1999; 100:1660–1666.

47. Antzelevitch C Transmural dispersion of repolarization and the T wave. Cardiovasc. Res. 2001; 50:426–431.

48. Fish JM, Antzelevitch C Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004; 1:210–217.

49. Fish JM, Antzelevitch C Cellular mechanism and arrhythmogenic potential of T-wave alternans in the Brugada syndrome. J. Cardiovasc. Electrophysiol. 2008; 19:301–308.

50. Veldkamp MW, Viswanathan PC, Bezzina C et.al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ. Res. 2000; 86:E91-97.

51. Tse G, Liu T, Li KHC et.al. Electrophysiological mechanisms of Brugada syndrome: Insights from preclinical and clinical studies. Front. Physiol. 2016; 7:467.

52. Antzelevitch C, Pollevick GD, Cordeiro JM et.al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circ J. 2007; 115:442–449.

53. Hoogendijk MG, Potse M, Linnenbank AC et.al. Mechanism of right precordial ST-segment elevation in structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm. 2010; 7:238–248.

54. Hoogendijk MG, Potse M, Vinet A et.al. ST segment elevation by current-to-load mismatch: an experimental and computational study. Heart Rhythm. 2011; 8:111–118.

55. Frustaci A, Priori SG, Pieroni M et.al. Cardiac Histological Substrate in Patients With Clinical Phenotype of Brugada Syndrome. Circ J. 2005; 112:3680-3687.

56. Catalano O, Antonaci S, Moro G et.al. Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. Eur. Heart J. 2009; 30:2241–2248.

57. Schulze-Bahr E, Eckardt L, Breithardt G et.al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: Different incidences in familial and sporadic disease. Hum. Mutat. 2003; 21:651– 652.

58. Nielsen MW, Holst AG, Olesen SP et.al. The genetic component of Brugada syndrome. Front. Physiol. 2013; 4:179.

59. Catterall WA, Goldin AL,Waxman SG International Union of Pharmacology XLVII Nomenclature and StructureFunction Relationships of Voltage-Gated Sodium Channels. Pharmacol. Rev. 2005; 57:397–409.

60. Wang Q., Li Z., Shen J et.al. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel. Genomics. 1996; 34:9–16.

61. Balser JR The Cardiac Sodium Channel: Gating Function and Molecular Pharmacology. J. Mol. Cell. Cardiol. 2001; 33:599–613.

62. Rivolta I., Abriel H, Tateyama M et.al. Inherited Brugada and Long QT-3 Syndrome Mutations of a Single Residue of the Cardiac Sodium Channel Confer Distinct Channel and Clinical Phenotypes. J. Biol. Chem. 2001; 276:30623–30630.

63. Olson TM, Michels V V, Ballew JD et.al. Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation. JAMA. 2005; 293:447.

64. Ruan Y, Liu N, Bloise R et.al. Gating properties of SCN5A mutations and the response to mexiletine in longQT syndrome type 3 patients. Circ J. 2007; 116:1137–1144.

65. Samani K, Wu G, Ai T et.al. A novel SCN5A mutation V1340I in Brugada syndrome augmenting arrhythmias during febrile illness. Heart Rhythm 2009; 6:1318–1326.

66. Huang W, Liu M, Yan SF et.al. Structure-based assessment of disease-related mutations in human voltagegated sodium channels. Protein Cell, 8 (2017) 401–438.

67. Abriel H Cardiac sodium channel Nav15 and interacting proteins: Physiology and pathophysiology. J. Mol. Cell. Cardiol. 2010; 48:2–11.

68. Shy D, Gillet L, Abriel H Cardiac sodium channel NaV15 distribution in myocytes via interacting proteins: The multiple pool model. Biochim. Biophys. Acta – Mol. Cell Res. 2013; 1833:886–894.

69. Brackenbury WJ, Isom LL Na Channel β Subunits: Overachievers of the Ion Channel Family. Front. Pharmacol. 2011; 2:53.

70. London B, Michalec M,Mehdi H et.al. Mutation in Glycerol-3-Phosphate Dehydrogenase 1-Like Gene (GPD1-L) Decreases Cardiac Na+ Current and Causes Inherited Arrhythmias. Circ J. 2007; 116:2260–2268.

71. Lowe JS, Palygin O, Bhasin N et.al. Voltage-gated Na v channel targeting in the heart requires an ankyrin-G– dependent cellular pathway. J. Cell Biol. 2008; 180:173– 186.

72. Zimmer T, Surber R SCN5A channelopathies – An update on mutations and mechanisms. Prog. Biophys. Mol. Biol. 2008; 98:120–136.

73. Baroudi G, Pouliot V, Denjoy I. et.al. Novel Mechanism for Brugada Syndrome Surface Defective Mutant Scna (R1432G). Circ. Res. 2001; 88:E78–E83

74. Cordeiro JM, Barajas-Martinez H, Hong K et.al. Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circ J. 2006; 114:2026–2033.

75. Valdivia CR, Tester DJ,. Rok BA et.al. A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc. Res. 2004; 62:53–62.

76. Pfahnl AE, Viswanathan PC,Weiss R et.al. A Sodium Channel Pore Mutation Causing Brugada Syndrome. Heart Rhythm. 2007; 27:590–609.

77. Kanters JK, Yuan L, Hedley PL et.al. Flecainide Provocation Reveals Concealed Brugada Syndrome in a Long QT Syndrome Family With a Novel L1786Q Mutation in SCN5A. Circ. J. 2014; 78:1136–1143.

78. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 1977; 69:497–515.

79. Hondeghem LM, Katzung BG. Antiarrhythmic Agents: The Modulated Receptor Mechanism of Action of Sodium and Calcium Channel-Blocking Drugs. Annu. Rev. Pharmacol. Toxicol. 1984; 24:387–423.

80. Roden DM. Pharmacology and Toxicology of Nav1.5-Class 1 anti-arrhythmic drugs. Card Electrophysiol Clin. 2014; 6:695–704.

81. Tikhonov DB, Zhorov BS Mechanism of sodium channel block by local anesthetics, antiarrhythmics, and anticonvulsants. J. Gen. Physiol. 2017; 149:465-481.

82. Balser JR, Nuss HB, Orias DW et.al. Local anesthetics as effectors of allosteric gating Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels. J. Clin. Invest. 1996; 98:2874–2886.

83. Valdivia CR, Ackerman MJ, Tester DJ et.al. A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc. Res. 2002; 55:279–289.

84. Makita N, Horie M, Nakamura T et.al. Druginduced long-QT syndrome associated with a subclinical SCN5A mutation. Circ J. 2002; 106:1269–1274.

85. Liu K, Yang T, Viswanathan PC et.al. New mechanism contributing to drug-induced arrhythmia: rescue of a misprocessed LQT3 mutant. Circ J. 2005; 112:3239–3246.

86. Bezzina CR, Tan HL Pharmacological rescue of mutant ion channels. Cardiovasc. Res. 2002; 55:229–232.

87. Liu H, Clancy C, Cormier J et.al. Mutations in cardiac sodium channels: clinical implications. Am. J. Pharmacogenomics. 2003; 3:173–179.

88. Itoh H, Shimizu M, Takata S et.al. A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs. J. Cardiovasc. Electrophysiol. 2005; 16:486–493.

89. Itoh H, Tsuji K, Sakaguchi T et.al. A paradoxical effect of lidocaine for the N406S mutation of SCN5A associated with Brugada syndrome. Int. J. Cardiol. 2007; 121:239–248.

90. Ruan Y, Denegri M, Liu N et.al. Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ. Res. 2010; 106:1374–1383.

91. Gourraud J-B, Barc J, Thollet A et.al. The Brugada Syndrome: A Rare Arrhythmia Disorder with Complex Inheritance. Front Cardiovasc Med. 2016; 3:9.

92. Zimmer T, Haufe V, Blechschmidt S Voltage-gated sodium channels in the mammalian heart. Glob. Cardiol. Sci. Pract. 2014; 58:449–463.

93. Amin AS, Asghari-Roodsari A, Tan HL Cardiac sodium channelopathies. Pflugers Arch. Eur. J. Physiol. 2009; 460:223–237.


Review

For citations:


Zaytseva A.K., Karpushev A.V., Mikhaylov E.N., Zhorov B.S., Kostareva A.A. MOLECULAR MECHANISMS OF BRUGADA SYNDOME SUBTYPE 1. Translational Medicine. 2017;4(4):23-35. (In Russ.) https://doi.org/10.18705/2311-4495-2017-4-4-23-35

Views: 896


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)