STUDY OF THE POSSIBILITY OF USING OF COLLOIDAL QUANTUM DOTS BASED ON AgInS2/ZnS FOR FLUORESCENCE IMAGING IN COMPARISON WITH FLUOROPHORES FIXED ON THE SURFACE OF THE NANOPARTICLES
https://doi.org/10.18705/2311-4495-2017-4-4-56-65
Abstract
About the Authors
M. S. IstominaRussian Federation
master student;
junior research assistant, Parkhomenko str. 15-B, Saint Petersburg, 194156
D. V. Korolev
PhD, head of the Research Laboratory of Nanotechnologies;
junior researcher,
Saint Petersburg
E. I. Pochkaeva
unior researcher, Mathematical Modeling Laboratory, Laboratory of Metabolism Metabolism,
Saint Petersburg
D. S. Mazing
engineer of the department microand nanoelectronics,
Saint Petersburg
V. A. Moshnikov
Dr. Sci., prof., Deputy Head. Department for Scientific Work,
Saint Petersburg
K. G. Gareev
Phd, assistant of the department microand nanoelectronics,
Saint Petersburg
K. Yu. Babikova
master student,
Saint Petersburg
V. N. Postnov
PhD, docent of the Institute of Chemistry of St. Petersburg State University;
senior researcher of Almazov National Medical Research Centre,
Saint Petersburg
References
1. Kobayashi H, Ogawa M, Alford R, et al. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev. 2010; 110(5): 2620–2640.
2. Vasiliev RB, Dirin DN. Quantum points: synthesis, properties, application. Moscow: MGU, 2007. 50. In Russian [Васильев Р. Б, Дирин Д. Н. Квантовые точки: синтез, свойства, применение. М.: МГУ, 2007. 50.]
3. Brongersma ML, Halas NJ, Nordlander Plasmoninduced hot carrier science and technology. Nature nanotechnology. 2015; 10(1): 25-34.
4. Gao W, Thamphiwatana S, Angsantikul P, Zhang, L. Nanoparticle approaches against bacterial infections. WIREs Nanomed Nanobiotechnol. 2014; 6: 532–547.
5. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology. 2013; 11(6): 371-384.
6. Yezhelyev MV, Gao X, Xing Y, et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657-67.
7. Moshnikov VA, Aleksandrova O.A., Drobintseva (Durnova) A.O. From laser optical microscopy to highresolution fluorescence microscopy. Colloidal quantum dots-biomarkers in exploratory scientific research. Biotekhnospera. 2014; 6(36): 16-30. In Russian [Мошников В.А., Александрова О.А., Дробинцева А.О. От лазерной оптической микроскопии до флуоресцентной микроскопии высокого разрешения. Коллоидные квантовые точки-биомаркеры в поисковых научных исследованиях. Биотехносфера. 2014; 6(36): 16-30]
8. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron. 2015;67:595-600.
9. Efros AL, Nesbitt DJ. Origin and control of blinking in quantum dots. Nat Nanotechnol. 2016;11(8):661-671.
10. Moshnikov VA, Alexandrova OA. Nanoparticles, nanosystems and their application. Part 1. Colloidal quantum dots. Ufa: Aetherna, 2015. p. 236. In Russian [Мошников В.А., Александрова О.А. Наночастицы, наносистемы и их применение. Ч.1. Коллоидные квантовые точки. Уфа: Аэтерна, 2015. c. 236].
11. Larson DR, Zipfel WR, Williams RM, et al. Watersoluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003; 300(5624):1434-1436.
12. Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004; 15(1):79-86.
13. Mashford BS, Stevenson M, Popovic Z, et al. Highefficiency quantum-dot light-emitting devices with enhanced charge injection. Nature photonics. 2013; 7(5): 407-412.
14. Toropova YG, Golovkin AS, Malashicheva AB, et al. In vitro toxicity of Fe(m)O(n), Fe(m)O(n)-SiO(2) composite, and SiO(2)-Fe(m)O(n) core-shell magnetic nanoparticles. Int J Nanomedicine. 2017;12:593-603.
15. Korolev DV, Babikova KYu, Postnov VN. Gasphase synthesis of aminated silica nanoparticles for medical applications. Biotekhnospera. 2016; 5(47): 42-47. In Russian [Королев Д.В., Бабикова К.Ю., Постнов В.Н. Газофазное аминирование наночастиц аэросила для медицинского применения. Биотехносфера. 2016; 5(47): 42-47.]
16. Mao B, Chuang C-H, Wang J, Clemens B. Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: intrinsic versus surface states. J. Phys. Chem. 2011; 115 (18): 8945–8954.
17. Zhong H, Bai Z, Zou B. Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications. J Phys Chem Lett. 2012;3(21):3167-75.
18. Leach AD, Macdonald JE. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J Phys Chem Lett. 2016;7(3):572-583.
19. Zang H, Li H, Makarov NS, Velizhanin KA, Wu K, Park YS, Klimov VI. Thick-Shell CuInS(2)/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Lett. 2017;17(3):1787-1795.
20. Raevskaya A, Lesnyak V, Haubold D, et al. A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. J. Phys. Chem. 2017; 121(16): 9032-9042.
21. Korolev DV, Aleksandrov IV, Galagudza MM, et al. Automation of data acquisition and processing in physiological experiments. Regional Haemodynamics and Microcirculation. 2008; 7(2): 79-84. In Russian [Королев Д.В, Александров И.В, Галагудза М.М. и др. Автоматизация получения и обработки данных физиологического эксперимента. Регионарное кровообращение и микроциркуляция. 2008; 7(2): 79-84].
22. Butner RW, McPherson AR. Adverse reactions in intravenous fluorescein angiography. Ann Ophthalmol. 1983; 15(11):1084-1086.
Review
For citations:
Istomina M.S., Korolev D.V., Pochkaeva E.I., Mazing D.S., Moshnikov V.A., Gareev K.G., Babikova K.Yu., Postnov V.N. STUDY OF THE POSSIBILITY OF USING OF COLLOIDAL QUANTUM DOTS BASED ON AgInS2/ZnS FOR FLUORESCENCE IMAGING IN COMPARISON WITH FLUOROPHORES FIXED ON THE SURFACE OF THE NANOPARTICLES. Translational Medicine. 2017;4(4):56-65. (In Russ.) https://doi.org/10.18705/2311-4495-2017-4-4-56-65