Preview

Трансляционная медицина

Расширенный поиск

ВОССТАНОВИТЕЛЬНЫЙ ПОСТИШЕМИЧЕСКИЙ НЕЙРОГЕНЕЗ: ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ

https://doi.org/10.18705/2311-4495-2016-3-6-21-31

Полный текст:

Аннотация

В настоящее время существует два основных подхода к изучению восстановления мозга после ишемического инсульта. Один из них связан с введением стволовых клеток в повреждённый мозг. Другой подход направлен на стимуляцию эндогенных процессов восстановления, в частности, постнатального нейрогенеза. Настоящий обзор рассматривает изменения постнатального нейрогенеза, вызванные ишемией мозга, и возможные пути регуляции этого процесса. Множество исследований на моделях животных демонстрируют, что нейрогенез в основном усиливается после ишемии, однако, несмотря на усиленную пролиферацию и миграцию нейрональных предшественников к зоне инсульта, большинство новых нейронов погибает, так и не созрев. Кроме того, усиление нейрогенеза в патологическом состоянии происходит в основном за счёт рекрутинга новых стволовых клеток, а не за счёт дополнительных делений клеток-предшественниц, что приводит, в конечном итоге, к ещё большему снижению способности к регенерации. Таким образом, эндогенных репаративных механизмов недостаточно, и необходим поиск новых мишеней для активизации пролиферации, выживания и созревания новых нейронов после ишемического инсульта. В качестве потенциальных регуляторов постишемического нейрогенеза рассматриваются ростовые факторы, системы нейротрансмиттеров и противовоспалительные препараты, а также показанное в последнее время перепрограммирование астроцитов в нейроны.

Об авторах

М. Ю. Ходанович
Национальный исследовательский Томский государственный университет
Россия

Ходанович Марина Юрьевна - доктор биологических наук, профессор, Томский государственный университет.

Пр. Ленина, д. 36, Томск, 634050



А. А. Кисель
Национальный исследовательский Томский государственный университет
Россия

Кисель Алена Андреевна - аспирант.

Пр. Ленина, д. 36, Томск, 634050, e-mail: kisell.alena@gmail.com



Список литературы

1. 10 ведущих причин смерти в мире: информ. бюл. ВОЗ № 310. Всемирная организация здравоохранения. http://www.who.int/mediacentre/factsheets/fs310/ru/ (4.10.2016).

2. Stahovskaya LV, Klyuchihina OA, Bogatyreva MD et al. Epidemiology of stroke in Russia based on territorial-populational register. J. Neurol. Psychiatry. 2013; 5: 4-10. In Russian [Стаховская Л.В., Ключихина О.А., Богатырева М.Д. и др. Эпидемиология инсульта в России по результатам территориально-популяционного регистра (2009-2010). Журнал неврологии и психиатрии имени С. С. Корсакова. 2013, 5:4-10].

3. Wang J, Yang W, Xie H et al. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen. Med. Res. 2014; 2:1-10.

4. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 1965; 124:319-335.

5. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255:1707-1710.

6. Chen Y, Sun FY. Age-related decrease of striatal neurogenesis is associated with apoptosis of neural precursors and newborn neurons in rat brain after ischemia. Brain Res. 2007; 1166:9-19.

7. Gould E, Reeves AJ, Fallah M et al. Hippocampal neurogenesis in adult Old World primates. Proc. Natl. Acad. Sci. USA. 1999; 96:5263-5267.

8. Eriksson PS, Perfilieva E, Björk-Eriksson T et al. Neurogenesis in the adult human hippocampus. Nat. Med. 1998; 4:1313-1317.

9. Conover JC, Allen RL. The subventricular zone: new molecular and cellular developments. Cell. Mol. Life Sci. 2002; 59:2128-2135.

10. Ma DK, Bonaguidi MA, Ming GL et al. Adult neural stem cells in the mammalian central nervous system. Cell Res. 2009; 19:672-682.

11. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994; 264:1145-1148.

12. Stanfield BB, Trice JE. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp. Brain Res. 1988; 72:399-406.

13. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 1999; 406:449-460.

14. Encinas JM, Michurina TV, Peunova N et al. Division-Coupled Astrocytic Differentiation and Age-Related Depletion of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell. 2011; 8:566-579.

15. Zhao C, Deng W, Gage FH. Mechanisms and Functional Implications of Adult Neurogenesis. Cell. 2008; 132:645-660.

16. Encinas JM, Enikolopov G. Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol. 2008; 85:243-272.

17. Mignone JL, Kukekov V, Chiang AS et al. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 2004; 469:311-324.

18. Artegiani B, Calegari F. Age-related cognitive decline: Can neural stem cells help us? Aging. 2012; 4:176-186.

19. Sun LY. Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice. Age. 2006; 28:181-189.

20. Saxe MD, Battaglia F, Wang JW et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl. Acad. Sci. 2006; 103:17501-17506.

21. Alvarez-Buylla A, Garcıa-Verdugo JM. Neurogenesis in Adult Subventricular Zone. J. Neurosci. 2002; 22:629-634.

22. Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci. Biobehav. Rev. 2009; 33:232-252.

23. Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog. Neurobiol. 2009; 88:41-63.

24. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A. Chain migration of neuronal precursors. Science. 1996; 271:978-981.

25. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron. 1997; 18:779-791.

26. Mason HA, Ito S, Corfas G. Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: inducers, inhibitors, and repellents. J. Neurosci. 2001; 21:7654-7663.

27. Cheng MF. Hypothalamic neurogenesis in the adult brain. Front. Neuroendocrinol. 2013; 34:167-178.

28. Takemura NU. Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neurosci. 2005; 134:121-132.

29. Wiltrout C, Lang B, Yan Y et al. Repairing brain after stroke: A review on post-ischemic neurogenesis. Neurochem. Int. 2007; 50:1028-1041.

30. Ishibashi S, Kuroiwa T, Sakaguchi M et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol. 2007; 207:302-313.

31. Zheng GQ, Cheng W, Wang Y et al. Ginseng total saponins enhance neurogenesis after focal cerebral ischemia. J. Ethnopharmacol. 2011; 133:724-728.

32. Wang Y, Zhao Z, Chow N et al. Activated protein C analog promotes neurogenesis and improves neurological outcome after focal ischemic stroke in mice via protease activated receptor. Brain Res. 2013; 1507:97-104.

33. Kang SS, Keasey MP, Arnold SA et al. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol. Disease. 2013; 49:68-78.

34. Chern CM, Liao JF, Wang YH et al. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radical Biol. Med. 2012; 52:1634-1647.

35. Kaneko N, Sawamoto K. Adult neurogenesis and its alteration under pathological conditions. Neurosci. Res. 2009; 63:155-164.

36. Jin K, Minami M, Lan JQ et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA. 2001; 98:4710-4715.

37. Zhang RL, Zhang ZG, Zhang L et al. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neurosci. 2001; 105:33-41.

38. Dempsey RJ, Sailor KA, Bowen KK et al. Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. J. Neurochem. 2003; 87:586-597.

39. Zhu DY, Liu SH, Sun HS et al. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J. Neurosci. 2003; 23:223-229.

40. Arvidsson A, Collin T, Kirik D et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 2002; 8:963-970.

41. Thored P, Arvidsson A, Cacci E et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006; 24:739-747.

42. Lin R, Cai J, Nathan C et al. Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability. Neurobiol. Dis. 2015; 74:229-239.

43. Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J. Cereb. Blood Flow Metab. 2000; 20:1166-1173.

44. Jiang Y, Wei N, Zhu J et al. Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediators Inflamm. 2010; 2010:1-10.

45. Palmer TD, Markakis EA, Willhoite AR et al. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 1999; 19:8487-8497.

46. Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA. 1999; 96:5768-5773.

47. Rakic P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 2002; 3:65-71.

48. Li QQ, Qiao GQ, Ma J et al. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature. Neural. Regen. Res. 2015; 10:277-285.

49. Hess DC, Hill WD, Martin-Studdard A et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke. 2002; 33:1362-1368.

50. Kokaia Z, Thored P, Arvidsson A et al. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress. Cereb. Cortex. 2006; 16:i162-i167.

51. Liu J, Solway K, Messing RO et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 1998; 18:7768-7778.

52. Salazar-Colocho P, Lanciego JL, Del Rio J et al. Ischemia induces cell proliferation and neurogenesis in the gerbil hippocampus in response to neuronal death. Neurosci. Res. 2008; 61:27-37.

53. Kee NJ, Preston E, Wojtowicz JM. Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp. Brain Res. 2001; 136:313-320.

54. Pforte C, Henrich-Noack P, Baldauf K et al. Increase in proliferation and gliogenesis but decrease of early neurogenesis in the rat forebrain shortly after transient global ischemia. Neurosci. 2005; 136:1133-1146.

55. Yagita Y, Kitagawa K, Ohtsuki T et al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke. 2001; 32:1890-1896.

56. Kisel AA, Chernyshova GA, Smol’yakova VI et al. Effect of fluoxetine on hippocampal neurogenesis after global cerebral ischemia in rats. Neuroscience for medicine and psychology : XI International Interdisciplinary Congress. 2015;198-199.

57. Kisel AA, Chernyshova GA, Smol’yakova VI et al. Hippocampal neurogenesis in the new model of global cerebral ischemia. New Operational Technologies (Newot’2015) : proceedings of the 5th International Scientific Conference. 2015; 030004:1-5.

58. Nakatomi H, Kuriu T, Okabe S et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002; 110:429-441.

59. Iwai M, Hayashi T, Zhang WR et al. Induction of highly polysialylated neural cell adhesion molecule PSANCAM in postischemic gerbil hippocampus mainly dissociated with neural stem cell proliferation. Brain Res. 2001; 902:288-293.

60. Bendel O, Bueters T, von Euler M et al. Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J. Cereb. Blood Flow Metab. 2005; 25:1586-1595.

61. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004; 41:683-686.

62. Ma DK, Kim WR, Ming GL et al. Activitydependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. N. Y. Acad. Sci. 2009; 1170:664-673.

63. Ma DK, Ming GL, Song H. Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr. Opin. Neurobiol. 2005; 15:514-520.

64. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature. 2002; 417:39-44.

65. Zweifel L, Kuruvilla SR, Ginty DD. Functions and mechanisms of retrograde neurotrophin signalling. Nat. Rev. Neurosci. 2005; 6:615-625.

66. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim. Biophys. Acta. 2013; 1830:2435-2448.

67. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000; 14:2919-2937.

68. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Ann. Rev. Neurosci. 2001; 24:677-736.

69. Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science. 1994; 263:1618-1623.

70. Schabitz WR, Schwab S, Spranger M et al. Intraventricular brain derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 1997; 17:500-506.

71. Yamashita K, Wiessner C, Lindholm D et al. Post occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab. Brain Dis. 1997; 12:271-280.

72. Schabitz WR, Berger C, Kollmar R et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. 2004; 35:992-997.

73. Ding J, Cheng Y, Gao S et al. Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J. Neurosci. Res. 2011; 89:222-230.

74. Mashayekhi F. Neural cell death is induced by neutralizing antibody to nerve growth factor: an in vivo study. Brain Dev. 2008; 30:112-117.

75. Saito A, Narasimhan P, Hayashi T et al. Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J. Neurosci. 2004; 24:1584-1593.

76. Cheng S, Ma M, Ma Y et al. Combination therapy with intranasal NGF and electroacupuncture enhanced cell proliferation and survival in rats after stroke. Neurol. Res. 2009; 31:753-758.

77. Rai KS, Hattiangady B, Shetty AK. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur. J. Neurosci. 2007; 26:1765-1779.

78. Aberg MA, Aberg ND, Hedbäcker H et al. Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 2000; 20:2896-2903.

79. Lichtenwalner RJ, Forbes ME, Bennett SA et al. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001; 107:603-613.

80. Hurtado-Chong A, Yusta-Boyo MJ, Vergaño-Vera E et al. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur. J. Neurosci. 2009; 30:742-755.

81. Hsieh J, Aimone JB, Kaspar BK et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 2004; 164:111-122.

82. Gluckman P, Klempt N, Guan J et al. A role for IGF-1 in the rescue of CNS neurons following hypoxicischemic injury. Biochem. Biophys. Res. Commun. 1992; 182:593-599.

83. Yan YP, Sailor KA, Vemuganti R et al. Insulinlike growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur. J. Neurosci. 2006; 24:45-54.

84. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neuorobiol. 1998; 36:287-306.

85. Nacher J, Alonso-Llosa G, Rosell DR et al. NMDA receptor antagonist treatment increases the production of new neurons in the aged rat hippocampus. Neurobiol. Aging. 2003; 24:273-284.

86. Bernabeu R, Sharp FR. NMDA and AMPA/kainate glutamate receptors modulate dentate neurogenesis and CA3 synapsin-I in normal and ischemic hippocampus. J. Cereb. Blood Flow Metab. 2000; 20:1669-1680.

87. Kluska MM, Witte OW, Bolz J et al. Neurogenesis in the adult dentate gyrus after cortical infarcts: effects of infarct location N-methyl-D-aspartate receptor blockade and anti-inflammatory treatment. Neuroscience. 2005; 135:723-735.

88. Arvidsson A, Kokaia Z, Lindvall O. N-methylD-aspartate receptor mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur. J. Neurosci. 2001; 14:10-18.

89. Malberg JE, Eisch AJ, Nestler EJ et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000; 20:9104-9110.

90. Khodanovich MY, Kisel AA, Chernysheva GA et al. Effect of Fluoxetine on Neurogenesis in Hippocampal Dentate Gyrus after Global Transient Cerebral Ischemia in Rats. Bull. Exp. Biol. Med. 2016; 161:351-354.

91. Li WL, Cai HH, Wang B et al. Chronic Fluoxetine Treatment Improves Ischemia-Induced Spatial Cognitive Deficits Through Increasing Hippocampal Neurogenesis After Stroke. J. Neurosci. Res. 2009; 87:112-122

92. Taguchi N, Nakayama S, Tanaka M. Fluoxetine has neuroprotective effects after cardiac arrest and cardiopulmonary resuscitation in mouse. Resuscitation. 2012; 83:652-656.

93. Borta A, Hoglinger GU. Dopamine and adult neurogenesis. J. Neurochem. 2007; 100:587-595.

94. Kotani S, Yamauchi T, Teramoto T et al. Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience. 2006; 142:505-514.

95. Tobin MK, Bonds JA, Minshall RD et al. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J. Cereb. Blood Flow Metab. 2014; 4:1573-1584.

96. Jakubs K, Bonde S, Iosif RE et al. Inflammation regulates functional integration of neurons born in adult brain. J. Neurosci. 2008; 28:12477-12488.

97. Ekdahl CT, Claasen JH, Bonde S et al. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA. 2003; 100:13632-13637.

98. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003; 302:1760-1765.

99. Liu Z, Fan Y, Won SJ et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke. 2007; 38:146-152.

100. Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke. 2005; 36: 2718-2724.

101. Chapman KZ, Ge R, Monni E et al. Inflammation without neuronal death triggers striatal neurogenesis comparable to stroke. Neurobiol. Dis. 2015; 83:1-15.

102. Vallieres L, Campbell IL, Gage FH et al. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 2002; 22:486-492.

103. Packer MA, Stasiv Y, Benraiss A et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl. Acad. Sci. USA. 2003; 100:9566-9571.

104. Zhang R, Zhang L, Zhang Z et al. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann. Neurol. 2001; 50:602-611.

105. Zhu DY, Liu SH, Sun HS et al. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J. Neurosci. 2003; 23:223-229.

106. Sehara Y, Hayashi T, Deguchi K et al. Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain Res. 2006; 1093:190-197.

107. Chen J, Zacharek A, Zhang C et al. Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J. Neurosci. 2005; 25:2366-2375.

108. Sun Y, Jin K, Childs JT et al. Neuronal nitric oxide synthase and ischemia-induced neurogenesis. J. Cereb. Blood Flow Metab. 2005; 25:485-492.

109. Takahashi K, Yamanaka S. Induction of pluripotent stem cellsfrom mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126:663-676.

110. Blum R, Heinrich C, Sánchez R et al. Neuronal network formation from reprogrammed early postnatal rat cortical glial cells. Cereb. Cortex. 2011; 21:413-424.

111. Heinrich C, Bergami M, Gascón S et al. Sox2mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortex. Stem Cell Reports. 2014; 3:1000-1014.

112. Karow M, Sánchez R, Schichor C et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell. 2012; 11:p. 471-476.

113. Heinrich C, Spagnoli FM, Berninger B. In vivo reprogramming for tissue repair. Nat. Cell Biol. 2015; 17:204-211.

114. Niu W, Zang T, Zou Y et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat. Cell Biol. 2013; 15:1164-1175.


Для цитирования:


Ходанович М.Ю., Кисель А.А. ВОССТАНОВИТЕЛЬНЫЙ ПОСТИШЕМИЧЕСКИЙ НЕЙРОГЕНЕЗ: ПЕРСПЕКТИВЫ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ. Трансляционная медицина. 2016;3(6):21-31. https://doi.org/10.18705/2311-4495-2016-3-6-21-31

For citation:


Khodanovich M.Y., Kisel A.A. NEUROGENESIS AFTER CEREBRAL ISCHEMIA: CLINICAL APPLICATION PROSPECTS. Translational Medicine. 2016;3(6):21-31. (In Russ.) https://doi.org/10.18705/2311-4495-2016-3-6-21-31

Просмотров: 162


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)