Preview

Translational Medicine

Advanced search

CHANGES IN CIRCULATING MICRORNA LEVELS DURING PATHOGENESIS OF GENETICALLY DETERMINED MATURITY ONSET DIABETES OF THE YOUNG

https://doi.org/10.18705/2311-4495-2016-3-6-15-20

Abstract

Maturity onset diabetes of the young or MODY is one of the monogenic forms of inherited diabetes, caused by genetic abnormalities in beta cells. Soft manifestation and overlapping clinical symptoms of MODY with common types of diabetes often lead to difficulties in diagnosis. One of the main criteria of correct MODY diagnosis is identification of causative mutations in MODY-related genes. Correct MODY diagnosis enable to apply more specific treatment strategies and identify unobvious cases of the disease by testing relatives of the patients. Circulating microRNAs are promising candidates for early diagnostic biomarkers of the disease. The review focuses on current literature data about MODY-associated microRNA types and their levels in diverse body fluids, which help to identify asymptomatic patients with different MODY types. 

About the Authors

T. A. Petrova
Federal Almazov North-West Medical Research Centre
Russian Federation

Tatiana A. Petrova  - PhD, Researcher, laboratory of molecular cardiology, Institute of molecular biology and genetics.

Akkuratova str. 2, Saint Petersburg, 197341, e-mail: tatianakhod@gmail.com

 



K. A. Kondratov
Federal Almazov North-West Medical Research Centre
Russian Federation

Kirill A. Kondratov  - PhD, Senior researcher, laboratory of molecular and cellular mechanisms of atherosclerosis, Institute of molecular biology and genetics.

Akkuratova str. 2, Saint Petersburg, 197341



A. V. Fedorov
Federal Almazov North-West Medical Research Centre
Russian Federation

Anton V. Fedorov - PhD, Head of the laboratory of molecular and cellular mechanisms of atherosclerosis, Institute of molecular biology and genetics.

Akkuratova str. 2, Saint Petersburg, 197341



I. L. Nikitina
Federal Almazov North-West Medical Research Centre
Russian Federation

Irina L. Nikitina  - MD, Head of the laboratory of pediatric endocrinology, Institute of endocrinology.

Akkuratova str. 2, Saint Petersburg, 197341



I. Y. Artemeva
Federal Almazov North-West Medical Research Centre
Russian Federation

Irina Y. Artemeva - Researcher laboratory  of  pediatric endocrinology, Institute of endocrinology.

Akkuratova str. 2, Saint Petersburg, 197341



A. A. Kostareva
Federal Almazov North-West Medical Research Centre
Russian Federation

Anna A. Kostareva - MD, PhD, Head of the Institute of molecular biology and genetics.

Akkuratova str. 2, Saint Petersburg, 197341



References

1. World Health Organization: Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications: Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva, World Health Org. 1999. 1–26.

2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2007. 30:42–47.

3. Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med 1974. 43:339–357.

4. Tattersall RB, Fajans SS. A difference between the inheritance of classical uvenile-onset and maturity-onset type diabetes of young people. Diabetes. 1975. 24:44–53.

5. Kuraeva TL, Zilberman LI, Titovich EV, et al. Genetics of monogenic forms of diabetes mellitus. Sacharnii diabet=Diabetes mellitus. 2011. 1:20–27. In Russian [Кураева Т.Л., Зильберман Л.И., Титович Е.В., и др. Генетика моногенных форм сахарного диабета. Сахарный диабет. 2011. 1:20–27].

6. Kim SH. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes Metab J. 2015. 39:468–477.

7. Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996. 384:458–460.

8. Tanizawa Y, Weissenbach J, Beckmann JS, et al. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992. 356:162–164.

9. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996. 384:455–458.

10. Staffers DA, Ferrer J, Clarke WL et al. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nature Genetics. 1997. 17:138–139.

11. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997. 17:384–385.

12. Kristinsson SY, Thorolfsdottir ET, Talseth B, et al. MODY in Iceland is associated with mutations in HNF-1alpha and a novel mutation in NeuroD1. Diabetologia. 2001. 44:2098–2103.

13. Fernandez-Zapico ME, van Velkinburgh JC, Gutiérrez-Aguilar R, et al. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem. 2009. 284:36482–36490.

14. Torsvik J, Johansson S, Johansen A, et al. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. Hum Genet. 2010. 127:55–64.

15. Plengvidhya N, Kooptiwut S, Songtawee N, et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab. 2007. 92:2821–2826.

16. Boesgaard TW, Pruhova S, Andersson EA, et al. Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY). BMC Med Genet. 2010. 11:42.

17. Borowiec M, Liew CW, Thompson R, et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci USA. 2009. 106:14460–14465.

18. Ovsyannikova AK, Rymar OD, Shakhtshneider EV, et al. ABCC8-related maturity-onset diabetes of the young (MODY12): clinical features and treatment perspective. Diabetes Ther. 2016. 7:591–600.

19. Bonnefond A, Philippe J, Durand E, et al. Wholeexome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012. 7e37423.

20. Prudente S, Jungtrakoon P, Marucci A, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am J Hum Genet. 2015. 97:177–185.

21. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008. 4:200–213.

22. Nikitina IL. Nonautoimmune diabetes mellitus in children. Lechashchii vrach=Physician. 2010. 6:22–27. In Russian [Никитина И.Л. Неаутоиммунный сахарный диабет у детей. Лечащий врач. 2010. 6:22–27].

23. Shields BM, Hicks S, Shepherd MH, et al. Maturityonset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010. 53:2504–2508.

24. Hattersley A, Bruining J, Shield J, et al. ISPAD Clinical Practice Consensus Guidelines 2006-2007. The diagnosis and management of monogenic diabetes in children. Pediatr Diabetes. 2006. 7:352–360.

25. McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem. 2013. 50:403–415.

26. Bedoya FJ, Matschinsky FM, Shimizu T, et al. Differential regulation of glucokinase activity in pancreatic islets and liver of the rat. J Biol Chem. 1986. 261:10760–10764.

27. Kritis AA, Argyrokastritis A, Moschonas NK, et al. Isolation and characterization of a third isoform of human hepatocyte nuclear factor 4. Gene. 1996. 173:275–280.

28. Duncan SA, Nagy A, Chan W. Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(-/-) embryos. Development. 1997. 124:279–287.

29. Nammo T, Yamagata K, Tanaka T, et al. Expression of HNF-4alpha (MODY1), HNF-1beta (MODY5), and HNF-1alpha (MODY3) proteins in the developing mouse pancreas. Gene Expr Patterns. 2008. 8:96–106.

30. Poll AV, Pierreux CE, Lokmane L, et al. A vHNF1/ TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes. 2006.55:61–69.

31. Teo AK, Wagers AJ, Kulkarni RN. New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metab. 2013.18:775–791.

32. Pearson ER, Badman MK, Lockwood CR, et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care. 2004. 27:1102–1107.

33. Owen K, Hattersley AT. Maturity-onset diabetes of the young: from clinical description to molecular genetic characterization. Best Pract Res Clin Endocrinol Metab. 2001. 15:309–323.

34. Flannick J, Johansson S, Njølstad PR. Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol. 2016.

35. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004. 116:281–297.

36. Kim VN., Han J., Siomi MC. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 2009. 10:126–139.

37. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010. 11:597–610.

38. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010. 56:1733–1741.

39. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011. 108:5003–5008.

40. Kondratov K, Kurapeev D, Popov M, et al. Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomol Detect Quantif. 2016. 8:9–14.

41. Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004. 432:226–230.

42. Taylor DD1, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008. 110:13–21.

43. Li LM, Hu ZB, Zhou ZX, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010. 70:9798–9807.

44. Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011. 128:608–616.

45. Properzi F, Logozzi M, Fais S. Exosomes: the future of biomarkers in medicine. Biomark Med. 2013. 7:769–778.

46. Zhao H, Bi T, Qu Z, et al. Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol Rep. 2014. 32:1003–1012.

47. Bonner C, Nyhan KC, Bacon S, et al. Identification of circulating microRNAs in HNF1A-MODY carriers. Diabetologia. 2013. 56:1743–1751.

48. Bacon S, Engelbrecht B, Schmid J, et al. MicroRNA-224 is readily detectable in urine of individuals with diabetes mellitus and is a potential indicator of beta-cell demise. Genes (Basel). 2015. 6:399–416.

49. Fendler W, Madzio J, Kozinski K, et al. Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors. Diabetologia. 2016. 59:1463–1473.


Review

For citations:


Petrova T.A., Kondratov K.A., Fedorov A.V., Nikitina I.L., Artemeva I.Y., Kostareva A.A. CHANGES IN CIRCULATING MICRORNA LEVELS DURING PATHOGENESIS OF GENETICALLY DETERMINED MATURITY ONSET DIABETES OF THE YOUNG. Translational Medicine. 2016;3(6):15-20. (In Russ.) https://doi.org/10.18705/2311-4495-2016-3-6-15-20

Views: 601


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)