Preview

Translational Medicine

Advanced search

EVALUATION OF CHITOSAN NANOPARTICLES BIODISTRIBUTION USING GROCOTT METHENAMINE SILVER STAINING

https://doi.org/10.18705/2311-4495-2017-4-1-63-69

Abstract

We show the utility of morphological method for evaluation of biodistribution of chitosan nanoparticles administered into an organism. Grocott methenamine silver staining was conducted with paraffin-embedded sections of liver, lung, brain and spleen (male Wistar rats, 250-300 g, n = 4) obtained 2 hours after intravenous injection of 1 mL suspension of chitosan nanoparticles at a concentration of 2 mg/mL. The average size of chitosan nanoparticles was about 100 nm (fraction ranging from 15 to 200 nm was 90%). It has been shown for the first time that the histochemical reaction can be used to identify chitosan nanoparticles into cells and tissues. Thus, Grocott silver staining enables to evaluate the biodistribution, cellular internalization and biodegradation of chitosan-containing drug delivery nanosystems.

About the Authors

S. G. Zhuravskii
Academician I. P. Pavlov First Saint Petersburg State Medical University; Federal Almazov North-West Medical Research
Russian Federation

Sergey G. Zhuravskii - MD, DSc, Head of the Laboratory of Experimental Histopathology, Center of Experimental Biomodeling, Institute of Experimental Medicine, Federal Almazov NWMRC; Leading Researcher at the Laboratory of Hear and Speech, R C Pavlov FS PSMU.

Parkhomenko str. 15-B, Saint Petersburg, 194156

 



G. Yu. Yukina
Academician I. P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Galina Yu. Yukina - PhD, Head of the Laboratory of Pathomorphology, R C Pavlov FS PSMU; Associate Professor at the Histology, Cytology and Embryology Department, Pavlov FS PSMU 



A. A. Panevin
Academician I. P. Pavlov First Saint Petersburg State Medical University; Federal Almazov North-West Medical Research
Russian Federation

Aleksey A. Panevin - Junior Researcher at the Laboratory of Experimental Histopathology, Center of Experimental Biomodeling, Institute for Experimental Medicine, Federal Almazov NWMRC; PhD Student at the Laboratory of Hear and Speech, R C Pavlov FS PSMU 



E. I. Pochkaeva
Academician I. P. Pavlov First Saint Petersburg State Medical University; Federal Almazov North-West Medical Research Centre
Russian Federation

Evgenia I. Pochkaeva - Junior Researcher at the Division of Microcirculation and Myocardial Metabolism, Center of Experimental Biomodeling, Institute of Experimental Medicine, Federal Almazov NWMRC



Y. A. Skorik
Federal Almazov North-West Medical Research Centre; Institute of macromolecular compounds
Russian Federation

Yury A. Skorik - PhD, Head of the Laboratory of Natural Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences; Head of the Analytical Chemistry Division, Institute of Experimental Medicine, Federal Almazov NWMRC 



D. L. Sonin
Federal Almazov North-West Medical Research Centre
Russian Federation

Dmitrii L. Sonin - MD, PhD, Head of the Division of Microcirculation and Myocardial Metabolism, Center of Experimental Biomodeling, Institute of Experimental Medicine Federal Almazov NWMRC



References

1. Berezin AS, Lomkova EA, Skorik YuA. Kon'yugatyi hitozana s biologicheski aktivnyimi soedineniyami: strategii konstruirovaniya, svoystva, napravlennyiy transport k biomisheni. Izvestiya Akademii nauk. Seriya himicheskaya. 2012; 4: 778-795. In Russian [Березин А. С., Ломкова Е. А., Скорик Ю. А. Конъюгаты хитозана с биологически активными соединениями: стратегии конструирования, свойства, направленный транспорт к биомишени. Известия Академии наук. Серия химическая. 2012; 4: 778-795].

2. Kritchenkov AS, Andranovitš S, Skorik JuA. Hitozan i ego proizvodnye: vektory v gennoj terapii. Uspehi himii. 2017; 86(3): 101-118. In Russian [Критченков А.С., Andranovitš S, Скорик Ю. А. Хитозан и его производные: векторы в генной терапии. Успехи химии. 2017; 86(3): 101-118].

3. Suzuki YS, Momose Y, Higashi N, et al. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J. Nucl. Med. 1998; 39(12): 2161-2166.

4. Seong SK, Ryu JM, Shin DH, et al. Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32(8): 910-917.

5. Hwang H, Kwon J, Oh PS, et al. Peptide-loaded nanoparticles and radionuclide imaging for individualized treatment of myocardial ischemia. Radiology. 2014; 273(1): 160-167.

6. Clementino A, Batger M, Garrastazu G, et al. The nasal delivery of nanoencapsulated statins - an approach for brain delivery. Int. J. Nanomedicine. 2016; 11: 6575-6590.

7. Hwang DW, Jang SJ, Kim YH, et al. Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds. Eur. J. Nucl. Med. Mol. Imaging. 2008; 35(10):1887-1898.

8. Mizuno T., Mohri K., Nasu S., et al. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence. J. Control Release. 2009; 134(2): 149-154.

9. Skorik YA, Golyshev AA, Kritchenkov AS, et al. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydrate Polymers. 2017; 162: 49-55.

10. Moraru AD, Costuleanu M, Sava A, et al. Intraocular biodistribution of intravitreal injected chitosan/gelatin nanoparticles. Rom. J. Morphol. Embryol. 2014; 55(3): 869-875.

11. Moraru AD, Costuleanu M, Costin D, et al. Iintraocular biodistribution of intravitreal injected fluorescent dexamethasone-chitosan nanoparticles in rabbit eyes. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2015; 119(2):484-90.

12. Hyung Park J, Kwon S, Lee M, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006; 27(1): 119-126.

13. Tsinzerling A. V. Sovremennyie infektsii. Patologicheskaya anatomiya i voprosyi patogeneza. SPb.: SOTIS, 1993. p. 363. In Russian [Цинзерлинг А. В. Современные инфекции. Патологическая анатомия и вопросы патогенеза. СПб.: СОТИС, 1993. c. 363].

14. Plánka L, Nečas A, Crha M, et al. Treatment of a bone bridge by transplantation of mesenchymal stem cells and chondrocytes in a composite scaffold in pigs: experimental study. Acta Chir. Orthop. Traumatol. Cech. 2011; 78(6): 528-536.

15. Tai BC, Du C, Gao S, et al. The use of a polyelectrolyte fibrous scaffold to deliver differentiated hMSCs to the liver. Biomaterials. 2010; 31(1): 48-57.

16. Grocott RG. A stain for fungi in tissue sections and smears using Gomori's methenamine-silver nitrate technic. Am. J. Clin. Pathol. 1955; 25(8): 975-979.

17. Zhang R, Wang S, Lu H, et al. Misdiagnosis of invasive pulmonary aspergillosis: a clinical analysis of 26 immunocompetent patients. Int. J. Clin. Exp. Med. 2014; 7(12): 5075-5082.

18. Bernardeschi C, Foulet F, Ingen-Housz-Oro S, et al. Cutaneous Invasive Aspergillosis: Retrospective Multicenter Study of the French Invasive-Aspergillosis Registry and Literature Review. Medicine (Baltimore). 2015; 94(26): 1-9.

19. Ma L, Xu R, Shi J, et al. Identification of fungi in fungal ball sinusitis: comparison between MUC5B immunohistochemical and Grocott methenamine silver staining. Acta Otolaryngol. 2013; 133(11):1181-1187.


Review

For citations:


Zhuravskii S.G., Yukina G.Yu., Panevin A.A., Pochkaeva E.I., Skorik Y.A., Sonin D.L. EVALUATION OF CHITOSAN NANOPARTICLES BIODISTRIBUTION USING GROCOTT METHENAMINE SILVER STAINING. Translational Medicine. 2017;4(1):63-69. (In Russ.) https://doi.org/10.18705/2311-4495-2017-4-1-63-69

Views: 984


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)