Preview

Translational Medicine

Advanced search

INVASIVE AND NON-INVASIVE METHODS OF HEMODYNAMIC PARAMETERS REGISTRATION IN WISTAR RATS IN RENOVASKULAR HYPERTENSION MODEL (2 KIDNEY, 1 CLIP)

https://doi.org/10.18705/2311-4495-2016-3-2-61-69

Abstract

Measurement of blood pressure, beat to beat interval and arterial baroreceptor reflex is a basic procedure in studies of experimental hypertension. Objective. The purpose of this work was to compare the results of the hemodynamics parameters derived from invasive (anaestheia and wake) and non-invasive (wake) measurements in Wistar rats before and after development of renovascular hypertension. Design and methods. In our experiments we used renovascular hypertension model 2 kidneys, 1 clip. During invasive measurements (anesthetized (pentobarbital sodium) and waking state) mean arterial pressure, beat to beat interval and arterial baroreceptor reflex were recorded. Direct measurements were made before and 8 weeks after placing the clamp on the left renal artery. On the tail registration of systolic blood pressure and beat to beat interval (with spectral analysis of heart rate variability) was carried out for all 8 weeks of observation 1 times per week. Results. The results of the invasive and non-invasive measurements did not contradict each other. Herewith the correct conclusion about the state of the arterial baroreceptor reflex can be done only through direct measurement in wake animal. While the dynamics of renovascular hypertension development can be observed only using non-invasive tail method. Conclusions. Based on the results of our work, we have concluded that the invasive and non-invasive hemodynamic parameters registration methods complement each other in studies of experimental hypertension.

About the Authors

Natalia V Kuzmenko
Федеральное государственное бюджетное учреждение «Северо-Западный Федеральный медицинский исследовательский центр им. В. А. Алмазова» Минздрава России; Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова» Минздрава России
Russian Federation


Mikhail G. Pliss
Федеральное государственное бюджетное учреждение «Северо-Западный Федеральный медицинский исследовательский центр им. В. А. Алмазова» Минздрава России; Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова» Минздрава России
Russian Federation


Vitaliy A. Tsyrlin
Федеральное государственное бюджетное учреждение «Северо-Западный Федеральный медицинский исследовательский центр им. В. А. Алмазова» Минздрава России; Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова» Минздрава России
Russian Federation


References

1. Plehm R, Barbosa ME, Bader M. Animal models for hypertension/blood pressure recording. Methods Mol Med. 2006; 129: 115-126.

2. Kramer K, Remie R. Measuring blood pressure in small laboratory animals. Methods Mol Med.2005; 108: 51-62.

3. Bravkov MF, Bershadskij BG. The role of baro-receptors in the regulation of heart rate in awake animals. Fiziol. zhurn SSSR.=Physiological journal of USSR. 1978; 64: 475-482. In Russian. [Бравков М.Ф., Бершадский Б.Г. Роль барорецепторов в регуляции сердечного ритма у бодрствующих животных. Физиол. журн. СССР 1978; 64: 475-482].

4. Tsyrlin VA, Pliss MG, Patkina NA, Bershadsky BG, Eremeev VS. Baroreceptor reflex inhibition as a mechanism for raising blood pressure under negative emotions. In:Sys-tems Research in Physiology, Gordon and Breach Science Publishers. Amsterdam, 1989; 3: 329-341.

5. Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol. 2002; 283(5): 1033-1040.

6. Kasparov S, Davies KA, Patel UA, Boscan P, Garret M, Paton JF. GABA(A) receptor epsilon-subunit may confer benzodiazepine insensitivity to the caudal aspect of the nucleus tractus solitarii of the rat. J Physiol. 2001; 536(3): 785-796.

7. Aono H, Hirakawa M, Unruh GK, Kindscher JD, Goto H. Anesthetic induction agents, sympathetic nerve activity and baroreflex sensitivity: a study in rabbits comparing thiopental, propofol and etomidate. Acta Med Okayama. 2001; 55(4): 197-203.

8. American Heart Association. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996; 93: 1043-1065.

9. Richard E. Klabunde. Cardiovascular Physiology Concepts. Second Edition Published by Lippincott Williams & Wilkins. 2011.

10. Zimmerman JB, Robertson D, Jackson EK. Angiotensin II-noradrenergic interactions in renovascular hypertensive rats. J. Clin. Invest. 1987; 80: 443-457.

11. Korolev DV, Aleksandrov IV, Sonin DL, Galagudza MM, Kuz’menko NV. A software complex for the study of the arterial, perfusion pressure and ECG signal from various influences. Proceedings of the international scientific conference «Mathematical methods in technics and technologies mmtt - XV». Tambov: Tambov state technical University. 2002; 7: 155-156. In Russian. [Королев Д.В, Александров И.В, Сонин Д.Л, Галагудза М.М, Кузьменко Н.В. Программный комплекс для исследования зависимости артериального, перфузионного давления и сигнала ЭКГ от различных воздействий. Труды международной научной конференции «Математические методы в технике и технологиях ММТТ - XV». Тамбов: Тамбовский государственный технический университет. 2002; 7: 155-156].

12. Smyth HS, Sleight PS, Pickering GW. Reflex regulation of arterial pressure during sleep in man. Circulat. Res. 1969; 24: 109-121.

13. Di Rienzo M, Parati G, Castiglioni P, Omboni S, Ferrari A.U, Ramirez A.J, Pedotti A, Mancia G. Role of sinoaortic afferents in modulating BP and pulse-interval spectral characteristics in unanesthetized cats. Am J Physi ol. 1991; 261(2): 1811-1818.

14. Souza HC, Martins-Pinge MC, Dias da Silva VJ, Borghi-Silva A, Gastaldi AC, Blanco JH, Tezini GC. Heart rate and arterial pressure variability in the experimental renovascular hypertension model in rats. Auton Neuros-ci.2008, May 30; 139, №1-2: 38-45.

15. Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, Nirmalan M, Wisloff U, Maltsev VA, Lakatta EG, Zhang H, Boyett MR. Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension. 2014; 64(6): 1334-1343.

16. Kawada T, Sugimachi M. Open-loop static and dynamic characteristics of the arterial baroreflex system in rabbits and rats. J Physiol Sci. 2016; 66(1): 15-41.

17. Hales S. Statistical Essays: Containing Haemastaticks; or, an Account of Some Hydraulick and Hydrostatical Experiments Made on the Blood and Blood-Vessels of Animals. London, United Kingdom: W. Innys & R. Manby, 1943. p. 1733.

18. u G, Hu G, Shen L, Tang D, Lu L, Li P. The measurement of baroreflex sensitivity in stress-induced hypertensive rats by spectral analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 1998; 15(3): 234-238.


Review

For citations:


Kuzmenko N.V., Pliss M.G., Tsyrlin V.A. INVASIVE AND NON-INVASIVE METHODS OF HEMODYNAMIC PARAMETERS REGISTRATION IN WISTAR RATS IN RENOVASKULAR HYPERTENSION MODEL (2 KIDNEY, 1 CLIP). Translational Medicine. 2016;3(2):61-69. (In Russ.) https://doi.org/10.18705/2311-4495-2016-3-2-61-69

Views: 874


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)