The role of ferritin subunits in the diagnosis of iron deficiency in patients with pulmonary hypertension
https://doi.org/10.18705/2311-4495-2025-12-3-214-224
EDN: SXCHZK
Abstract
Background. Iron deficiency (ID) is a common issue among patients with pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH), negatively impacting their exercise tolerance. Identifying latent iron deficiency in these groups is challenging due to the influence of chronic inflammation on interpreting iron metabolism markers. The L- and H-subunits of ferritin are promising candidates for assessing iron deficiency. Objective is to evaluate the possibilities of using ferritin subunits in the differential diagnosis of absolute and functional (against the background of inflammation) iron deficiency in patients with variants of precapillary pulmonary hypertension. Methods. Study involved 20 PAH and 47 CTEPH patients undergoing echocardiography, right heart catheterization, 6-minute walk tests, and lab assessments of heart failure, inflammation, and iron metabolism. Results. Moderate correlations were found between serum ferritin (SF) and its subunits with MCP-1, which indicates the role of inflammation in changing ferritin levels. The increase in SF in the CTEH group is due to the L- and H-subunits. The study also showed correlations of both ferritin subunits with markers of iron deficiency, such as TSAT and sTfRF, but there were no differences in the ratio of subunits at absolute and functional ID. Conclusion. Findings provide insights into SF/subunit correlations with inflammation/iron markers in PAH/CTEPH, though their utility for differential diagnosis remains limited. The results of the study are important for understanding the mechanisms of iron deficiency in PAH and CTEPH.
Keywords
About the Authors
Yu. I. ZhilenkovaRussian Federation
Yulia I. Zhilenkova, MD, PhD, Associate Professor, Laboratory Medicine and Clinics Department
Akkuratova str., 2, Saint Petersburg, 197341
Competing Interests:
The authors declare no conflict of interest
M. A. Simakova
Russian Federation
Maria A. Simakova, MD, PhD, Senior Researcher, Cardiomyopathy Research Laboratory
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
E. A. Zolotova
Russian Federation
Ekaterina A. Zolotova, MD, Assistant, Laboratory Medicine and Clinics Department
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
N. S. Goncharova
Russian Federation
Natalya S. Goncharova, MD, PhD, Senior Researcher, Research Laboratory of Cardiomyopathy
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
E. V. Karelkina
Russian Federation
Elena V. Karelkina, MD, Researcher at the Research Laboratory of Cardiomyopathies
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
O. M. Moiseeva
Russian Federation
Olga M. Moiseeva, MD, DSc, Professor, Head, Department of Non-Coronary Heart Diseases
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
T. V. Vavilova
Russian Federation
Tatiana V. Vavilova, MD, DSc, Professor, Head, Laboratory Medicine and Clinics Department
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest
References
1. Sonnweber T, Nairz M, Theurl I, et al. The crucial impact of iron deficiency definition for the course of precapillary pulmonary hypertension. PLoS ONE. 2018;13(8):e0203396. DOI:10.1371/journal.pone.0203396.
2. Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med. 2020;287(2):153– 70. DOI:10.1111/joim.13004.
3. Cappellini MD, Comin-Colet J, De Francisco A, et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am J Hematol. 2017;92(10):1068–78. DOI:10.1002/ajh.24820.
4. Ahmad S, Moriconi F, Naz N, et al. Ferritin L and Ferritin H are differentially located within hepatic and extra hepatic organs under physiological and acute phase conditions. Int J Clin Exp Pathol. 2013;6(4):622–9. DOI:10.1093/intimm/dxx031.
5. Sun S, Chasteen ND. Ferroxidase kinetics of horse spleen apoferritin. J Biol Chem. 1992;267(35):25160–6. DOI:10.1016/S0021-9258(19)74019-8.
6. Knovich MA, Storey JA, Coffman LG, et al. Ferritin for the clinician. Blood Rev. 2009;23(3):95–104. DOI:10.1016/j.blre.2008.08.001.
7. Ruscitti P, Di Benedetto P, Berardicurti O, et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep. 2020;10(1):12232. DOI:10.1038/s41598-020-69204-6.
8. Avdeev SN, Barbarash OL, Valieva ZS, et al. 2024 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Russ J Cardiol. 2024;29(11):6161. In Russian DOI:10.15829/1560-4071-2024-6161.
9. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685– 713. DOI:10.1016/j.echo.2010.05.010.
10. ATS Statement: Guidelines for the Six-Minute Walk Test. Am J Respir Crit Care Med. 2002;166(1):111–7. DOI:10.1164/ajrccm.166.1.at1102.
11. Avdeev SN, Barabash OL, Bautin AE, et al. 2020 Clinical practice guidelines for Pulmonary hypertension, including chronic thromboembolic pulmonary hypertension. Russ J Cardiol. 2021;26(12):4683. In Russian DOI:10.15829/1560-4071-2021-4683.
12. Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting Survival in Pulmonary Arterial Hypertension: Insights From the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122(2):164–72. DOI:10.1161/CIRCULATIONAHA.109.898122.
13. Hurdman J, Condliffe R, Elliot CA, et al. ASPIRE registry: Assessing the Spectrum of Pulmonary hypertension Identified at a REferral centre. Eur Respir J. 2012;39(4):945–55. DOI:10.1183/09031936.00078411.
14. Sonnweber T, Pizzini A, Tancevski I, et al. Anaemia, iron homeostasis and pulmonary hypertension: a review. Intern Emerg Med. 2020;15(4):573–85. DOI:10.1007/s11739-020-02324-w.
15. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. DOI:10.1182/blood-2018-05-815944.
16. Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29(9):401–9. DOI:10.1093/intimm/dxx031.
17. Koudstaal T, Boomars KA, Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective. JCM. 2020;9(2):561. DOI:10.3390/jcm9020561.
18. Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;j5492. DOI:10.1136/bmj.j5492.
19. Ruscitti P, Cipriani P, Di Benedetto P, et al. H-ferritin and proinflammatory cytokines are increased in the bone marrow of patients affected by macrophage activation syndrome. Clin Exp Immunol. 2018;191(2):220– 8. DOI:10.1111/cei.13072.
20. Ruscitti P, Cipriani P, Di Benedetto P, et al. Increased level of H-ferritin and its imbalance with L-ferritin, in bone marrow and liver of patients with adult onset Still’s disease, developing macrophage activation syndrome, correlate with the severity of the disease. Autoimmun Rev. 2015;14(5):429–37. DOI:10.1016/j.autrev.2015.01.006.
21. Singh S, Anshita D, Ravichandiran V. MCP- 1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101:107598. DOI:10.1016/j.intimp.2021.107598.
22. Koudstaal T, Van Uden D, Van Hulst JAC, et al. Plasma markers in pulmonary hypertension subgroups correlate with patient survival. Respir Res. 2021;22(1):137. DOI:10.1186/s12931-021-01888-9.
23. Quarck R, Wynants M, Verbeken E, et al. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015;46(2):431–43. DOI:10.1183/09031936.00009914.
24. Rhodes CJ, Howard LS, Busbridge M, et al. Iron Deficiency and Raised Hepcidin in Idiopathic Pulmonary Arterial Hypertension. J Am Coll Cardiol. 2011;58(3):300– 9. DOI:10.1016/j.jacc.2011.03.036.
25. Nemeth E, Ganz T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int J Mol Sci. 2021;22(12):6493. DOI:10.3390/ijms22126493.
26. Grote Beverborg N, Klip IjT, Meijers WC, et al. Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients. Circ Heart Fail. 2018;11(2):e004519. DOI:10.1161/CIRCHEARTFAILURE.117.004519.
27. Grote Beverborg N, Van Veldhuisen DJ, Van Der Meer P. Anemia in Heart Failure. JACC Heart Fail. 2018;6(3):201–8. DOI:10.1016/j.jchf.2017.11.009.
28. Weiss G. Anemia of Chronic Disorders: New Diagnostic Tools and New Treatment Strategies. Semin Hematol. 2015;52(4):313–20. DOI:10.1053/j.seminhematol.2015.07.004.
29.
Review
For citations:
Zhilenkova Yu.I., Simakova M.A., Zolotova E.A., Goncharova N.S., Karelkina E.V., Moiseeva O.M., Vavilova T.V. The role of ferritin subunits in the diagnosis of iron deficiency in patients with pulmonary hypertension. Translational Medicine. 2025;12(3):214-224. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-3-214-224. EDN: SXCHZK