Preview

Translational Medicine

Advanced search

Natural and artificial exosomes for translational nanomedicine

https://doi.org/10.18705/2311-4495-2025-12-1-80-93

EDN: YICJVA

Abstract

Exosomes are spherical extracellular nanovesicles of endosomal origin, whose function is to encapsulate part of the contents of the parent cells producing them and transport this content to the target recipient cells using biological fluids. Due to their properties, exosomes are considered as potential biological drug delivery systems. For medical purposes, exosomes are isolated from various natural sources. The use of each type of exosome for therapeutic purposes has its advantages and is associated to varying degrees with several biological (stability, immunogenicity, toxicity) and technical (production scaling-up, standardization of isolation protocols, drug loading) problems. Exosomes derived from human cells have significant potential as therapeutic drug (TD) delivery vehicles due to their endogenous origin. However, simultaneously with the delivery of TD, they can carry potentially dangerous biomolecules. Farm animal milk-derived exosomes and exosome-like plant-derived extracellular vesicles have enormous therapeutic potential in themselves and are safe as drug delivery vehicles. However, data on their effects on the human body are limited. Artificial exosomes created with the help of nanobiotechnology can overcome many of the technical limitations inherent in natural exosomes. The review discusses the strengths and limitations of different types of natural and artificial exosomes as drug delivery nanocarriers, as well as challenges associated with their implementation in clinical practice.

About the Authors

A. G. Polischouk
Granov Russian Research Center of Radiology and Surgical Technologes
Russian Federation

Anna G. Polischouk, PhD, senior researcher, laboratory of genetic engineering 

Saint Petersburg 


Competing Interests:

The authors declare no conflict of interest



E. I. Yakubovich
Granov Russian Research Center of Radiology and Surgical Technologes
Russian Federation

Elena I. Yakubovich, PhD, leading researcher, laboratory of genetic engineering 

Saint Petersburg 


Competing Interests:

The authors declare no conflict of interest



V. I. Evtushenko
Granov Russian Research Center of Radiology and Surgical Technologes
Russian Federation

Vladimir I. Evtushenko, Dr.habil., head of the laboratory of genetic engineering 

Saint Petersburg 


Competing Interests:

The authors declare no conflict of interest



References

1. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reti­ culocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–978. DOI: 10.1016/0092-8674(83)90040-5.

2. Von Schulze A, Deng F. A review on exosome-based cancer therapy. J Cancer Metastasis Treat. 2020;6:42. DOI:10.20517/2394-4722.2020.79.

3. Gomzikova MO, James V, Rizvanov AA. Mitochondria Donation by Mesenchymal Stem Cells: Current Understanding and Mitochondria Transplantation Stra­ tegies. Front Cell Dev Biol. 2021 Apr 7;9:653322. DOI: 10.3389/fcell.2021.653322.

4. Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. Nanomaterials (Basel). 2024 Apr 6;14(7):639. DOI: 10.3390/nano14070639.

5. Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019 Jan 30;9(4):1015–1028. DOI: 10.7150/thno.30853.

6. Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: a review. Crit Rev Biotechnol. 2020 Sep;40(6):804–820. DOI: 10.1080/07388551.2020.1785385.

7. Ferguson SW, Nguyen J. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. J Control Release. 2016 Apr 28;228:179– 190. DOI: 10.1016/j.jconrel.2016.02.037.

8. Caradec J, Kharmate G, Hosseini-Beheshti E, et al. Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem. 2014 Sep;47(13– 14):1286–1292. DOI: 10.1016/j.clinbiochem.2014.06.011.

9. Wen Y, Chen Y, Wang G, et al. Factors influencing the measurement of the secretion rate of extracellular vesicles. Analyst. 2020 Aug 24;145(17):5870–5877. DOI: 10.1039/d0an01199a.

10. Haraszti RA, Miller R, Stoppato M, et al. Exosomes Produced from 3D Cultures of MSCs by Tangential Flow Filtration Show Higher Yield and Improved Activity. Mol Ther. 2018 Dec 5;26(12):2838–2847. DOI: 10.1016/j.ymthe.2018.09.015.

11. Syromiatnikova V, Prokopeva A, Gomzikova M. Methods of the Large-Scale Production of Extracellular Vesicles. Int J Mol Sci. 2022 Sep 10;23(18):10522. DOI: 10.3390/ijms231810522.

12. Harmati M, Tarnai Z, Decsi G, et al. Stressors alter intercellular communication and exosome profile of nasopharyngeal carcinoma cells. J Oral Pathol Med. 2017 Apr;46(4):259–266. DOI: 10.1111/jop.12486.

13. Wen Y, Fu Q, Soliwoda A, Zhang S, et al. Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles. Extracell Vesicle. 2022 Dec;1:100004. DOI: 10.1016/j.vesic.2022.100004.

14. Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013 Sep 24;7(9):7698–7710. DOI: 10.1021/nn402232g.

15. Yakubovich EI, Polischouk AG, Evtushenko VI. Principles and Problems of Exosome Isolation from Biological Fluids. Biologicheskie membrany`=biological membranes. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(2):115–126. DOI: 10.1134/S1990747822030096. In Russian

16. Wang J, Ma P, Kim DH, et al. Towards MicrofluidicBased Exosome Isolation and Detection for Tumor Therapy. Nano Today. 2021 Apr;37:101066. DOI: 10.1016/j.nantod.2020.101066.

17. ExoQuick® ULTRA EV Isolation System. System Biosciences. Available from: https://www.systembio.com/products/exosome-research/exosome-isolation/exoquick-ultra/serum-and-plasma-0/the-purest-and-highestyielding-ev-isolation-system (Accessed [10.12.2024]).

18. Grigorieva AE, Dyrkheeva NS, Bryzgunova OE, et al. Contamination of exosome preparations isolated from biological fluids. Biomedical chemistry. 2017;63(1):91– 96. In Russian DOI:10.18097/PBMC2017630191.

19. Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv. 2010 Apr;7(4):403–27. DOI: 10.1517/17425241003610633.

20. Koleva LD, Ataullakhanov FI, Sinauridze EI. Erythrocyte as an ideal carrier for intravascular drug delivery. Voprosy` gematologii/onkologii i immunopatologii v pediatrii=Issues of hematology/oncology and immunopathology in pediatrics. 2020;19(4):234‒242. In Russian https://doi.org/10.24287/1726-1708-2020-19-4-234-242.

21. Bustamante López SC, Meissner KE. Characterization of carrier erythrocytes for biosensing applications. J Biomed Opt. 2017 Sep 1;22(9):91510. DOI: 10.1117/1.JBO.22.9.091510.

22. Levene M, Bain MD, Moran NF, et al. Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy. J Clin Med. 2019 Apr 5;8(4):457. DOI: 10.3390/jcm8040457.

23. Anselmo AC, Gupta V, Zern BJ, et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano. 2013 Dec 23;7(12):11129‒11137. DOI: 10.1021/nn404853z.

24. Rossi NA, Constantinescu I, Kainthan RK, et al. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials. 2010 May;31(14):4167‒4178. DOI: 10.1016/j.biomaterials.2010.01.137.

25. Pouliot R, Saint-Laurent A, Chypre C, et al. Spectroscopic characterization of nanoErythrosomes in the absence and presence of conjugated polyethyleneglycols: an FTIR and (31)P-NMR study. Biochim Biophys Acta. 2002 Aug 31;1564(2):317‒324. DOI: 10.1016/s0005-2736(02)00465-0.

26. Hu CM, Fang RH, Zhang L. Erythrocyte-inspired delivery systems. Adv Healthc Mater. 2012 Sep;1(5):537‒547. DOI: 10.1002/adhm.201200138. 27. Kim SH, Kim EJ, Hou JH, et al. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials. 2009 Feb;30(5):959‒967. DOI: 10.1016/j.biomaterials.2008.10.031.

27. Mishra PR, Jain NK. Folate conjugated doxorubicin-loaded membrane vesicles for improved cancer therapy. Drug Deliv. 2003 Oct-Dec;10(4):277‒282. DOI: 10.1080/drd_10_4_277.

28. Gupta N, Patel B, Ahsan F. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res. 2014 Jun;31(6):1553‒1565. DOI: 10.1007/s11095-013-1261-7.

29. Barathan M, Ng SL, Lokanathan Y, et al. Milk-Derived Extracellular Vesicles: A Novel Perspective on Comparative Therapeutics and Targeted Nanocarrier Application. Vaccines (Basel). 2024 Nov 15;12(11):1282. DOI: 10.3390/vaccines12111282.

30. Ishikawa H, Rahman MM, Yamauchi M, et al. mRNA Profile in Milk Extracellular Vesicles from Bovine Leukemia Virus-Infected Cattle. Viruses. 2020 Jun 20;12(6):669. DOI: 10.3390/v12060669.

31. Li J, Shang X, Zhang S, et al. Breed-Related Differential microRNA Expression and Analysis of Colostrum and Mature Milk Exosomes in Bamei and Landrace Pigs. Int J Mol Sci. 2024 Jan 4;25(1):667. DOI: 10.3390/ijms25010667.

32. García-Martínez J, Pérez-Castillo ÍM, Salto R, et al. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients. 2022 Mar 30;14(7):1442. DOI: 10.3390/nu14071442.

33. Adriano B, Cotto NM, Chauhan N, et al. Milk exosomes: Nature’s abundant nanoplatform for theranostic applications. Bioact Mater. 2021 Feb 2;6(8):2479‒2490. DOI: 10.1016/j.bioactmat.2021.01.009.

34. Tian MY, Hao DX, Liu Y, et al. Milk exosomes: an oral drug delivery system with great application potential. Food Funct. 2023 Feb 6;14(3):1320‒1337. DOI: 10.1039/d2fo02013k.

35. Roy D, Ye A, Moughan PJ, et al. Composition, Structure, and Digestive Dynamics of Milk From Different Species-A Review. Front Nutr. 2020 Oct 6;7:577759. DOI: 10.3389/fnut.2020.577759.

36. Wijenayake S, Eisha S, Tawhidi Z, et al. Comparison of methods for pre-processing, exosome isolation, and RNA extraction in unpasteurized bovine and human milk. PLoS One. 2021 Sep 30;16(9):e0257633. DOI: 10.1371/journal.pone.0257633.

37. Li X, Su L, Zhang X, et al. Recent Advances on the Function and Purification of Milk Exosomes: A Review. Front Nutr. 2022 Jun 9;9:871346. DOI: 10.3389/fnut.2022.871346.

38. Zhang Q, Xiao Q, Yin H, et al. Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma. RSC Adv. 2020 Jul 29;10(47):28314‒28323. DOI: 10.1039/d0ra05630h.

39. Lugini L, Valtieri M, Federici C, et al. Exosomes from human colorectal cancer induce a tumor-like behavior in colonic mesenchymal stromal cells. Oncotarget. 2016 Aug 2;7(31):50086‒50098. DOI: 10.18632/oncotarget.10574.

40. Cossetti C, Lugini L, Astrologo L, et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One. 2014 Jul 3;9(7):e101629. DOI: 10.1371/journal.pone.0101629.

41. Canitano A, Venturi G, Borghi M, et al. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett. 2013 Sep 1;337(2):193‒199. DOI: 10.1016/j.canlet.2013.05.012.

42. Logozzi M, Di Raimo R, Mizzoni D, et al. The Potentiality of Plant-Derived Nanovesicles in Human Health-A Comparison with Human Exosomes and Artificial Nanoparticles. Int J Mol Sci. 2022 Apr 28;23(9):4919. DOI: 10.3390/ijms23094919.

43. Karamanidou T, Tsouknidas A. Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers. Int J Mol Sci. 2021 Dec 24;23(1):191. DOI: 10.3390/ijms23010191.

44. Alzahrani FA, Khan MI, Kameli N, et al. Plant-Derived Extracellular Vesicles and Their Exciting Potential as the Future of Next-Generation Drug Delivery. Biomolecules. 2023 May 15;13(5):839. DOI: 10.3390/biom13050839.

45. Woith E, Guerriero G, Hausman JF, et al. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci. 2021 Apr 2;22(7):3719. DOI: 10.3390/ijms22073719.

46. Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019 Feb 20;10(2):529‒538. DOI: 10.1039/c8fo02295j.

47. Ju S, Mu J, Dokland T, et al. Grape exosomelike nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013 Jul;21(7):1345‒57. DOI: 10.1038/mt.2013.64.

48. Teng Y, Ren Y, Sayed M, et al. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe. 2018 Nov 14;24(5):637‒652.e8. DOI: 10.1016/j.chom.2018.10.001.

49. Stanly C, Alfieri M, Ambrosone A, et al. Grapefruit-Derived Micro and Nanovesicles Show Distinct Metabolome Profiles and Anticancer Activities in the A375 Human Melanoma Cell Line. Cells. 2020 Dec 21;9(12):2722. DOI: 10.3390/cells9122722.

50. Chen Q, Li Q, Liang Y, et al. Natural exosomelike nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B. 2022 Feb;12(2):907‒923. DOI: 10.1016/j.apsb.2021.08.016.

51. Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015 Aug 14;6(23):19514‒19527. DOI: 10.18632/oncotarget.4004.

52. Kim MK, Choi YC, Cho SH, et al. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Eng Regen Med. 2021 Aug;18(4):561‒571. DOI: 10.1007/s13770-021-00367-8.

53. Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014 Mar;22(3):522‒534. DOI: 10.1038/mt.2013.190.

54. Wang Q, Ren Y, Mu J, et al. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015 Jun 15;75(12):2520‒9. DOI: 10.1158/0008-5472.CAN-14-3095.

55. Zhuang X, Teng Y, Samykutty A, et al. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016 Feb;24(1):96‒105. DOI: 10.1038/mt.2015.188.

56. Kameli N, Dragojlovic-Kerkache A, Savelkoul P, et al. Plant-Derived Extracellular Vesicles: Current Findings, Challenges, and Future Applications. Membranes (Basel). 2021 May 29;11(6):411. DOI: 10.3390/ membranes11060411.

57. Pocsfalvi G, Turiák L, Ambrosone A, et al. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations. J Plant Physiol. 2018 Oct; 229:111‒121. DOI: 10.1016/j.jplph.2018.07.006.


Review

For citations:


Polischouk A.G., Yakubovich E.I., Evtushenko V.I. Natural and artificial exosomes for translational nanomedicine. Translational Medicine. 2025;12(1):80-93. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-1-80-93. EDN: YICJVA

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)