Preview

Translational Medicine

Advanced search

А new technology for maturation of human oo cytes by injection of extracellular vesicles of follicular donor fluid under the shiny shell of the female gamete

https://doi.org/10.18705/2311-4495-2025-12-1-17-26

EDN: UXLPNN

Abstract

Background. In assisted reproductive technology (ART) programs, not all oocytes obtained during transvag inal puncture (TVP) are suitable for fertilization, as not all of them are at MII stage. Oocytes at germinal vesicle (GV) and MI stages are discarded because, after cumulus cells (CC) removal, their maturation and fertilization become impossible. Study proposes method for oocytes maturing by introducing extracellular vesicles (EVs) from follicular fluid (FF) into the perivitelline space. Objective. To evaluate the clinical feasibility of GV/MI oo cytes maturing technology without cumulus cells by injecting donor FF EVs under the zona pellucida. Materials and methods. FF (5 ml) was collected from 4 donors. EVs were isolated using sequential centrifugation. Portion of EVs was analyzed using Nanoparticle Tracking Analysis (NTA), while another portion was examined using transmission electron microscopy (TEM). Total of 53 immature oocytes were selected for the main group and 18 for the control group. Donor FF EVs were injected 4 hours after CC removal by introducing EVs suspension under zona pellucida. After 17 hours, oocyte maturity was assessed in both groups. Results. Oocytes maturation rate in the main group was statistically significantly higher than in the control group, indicating the potential effectiveness of the EV-IVM method for maturing GV-stage oocytes. Conclusion. Obtained data provide hope for the development of a new method for in vitro oocyte maturation.

About the Authors

B. V. Zingerenko
Academician V. I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Russian Federation

Boris V. Zingerenko, Junior Research Fellow, Department Assistive Technologies in Infertility Treatment

Moscow


Competing Interests:

The authors declare no conflict of interest



N. P. Makarova
Academician V. I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Russian Federation

Natalya P. Makarova, DSc, leading researcher, department of IVF named after Professor B. V. Leonov

Moscow


Competing Interests:

The authors declare no conflict of interest



A. P. Sysoeva
Academician V. I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Russian Federation

Anastasia P. Sysoeva, PhD, Embryologist, Department 
of Assistive Technologies in Infertility Treatment

Moscow


Competing Interests:

The authors declare no conflict of interest



E. A. Evtushenko
Lomonosov Moscow State University
Russian Federation

Ekaterina A. Evtushenko, PhD, Senior Lecturer, Faculty of Biology

Moscow


Competing Interests:

The authors declare no conflict of interest



E. V. Kulakova
Academician V. I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Russian Federation

Elena V. Kulakova, MD, senior researcher, department of IVF named after Professor B. V. Leonov

Moscow


Competing Interests:

The authors declare no conflict of interest



E. A. Kalinina
Academician V. I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology
Russian Federation

Elena A. Kalinina, MD, PhD, professor, Chief of Department of Assistive Technologies in Infertility Treatment

Moscow


Competing Interests:

The authors declare no conflict of interest



References

1. Silber SJ, Goldsmith S, Castleman L, Hayashi K. In Vitro Maturation, In Vitro Oogenesis, and Ovarian Longevity. Reprod Sci. 2024 May;31(5):1234–1245. DOI: 10.1007/s43032-023-01427-1. Epub 2023 Dec 30. PMID: 38160209; PMCID: PMC11090930.

2. Das M, Son WY. In vitro maturation (IVM) of human immature oocytes: is it still relevant? Reprod Biol Endocrinol. 2023 Nov 22;21(1):110. DOI: 10.1186/s12958023-01162-x. PMID: 37993914; PMCID: PMC10664544.

3. Ho VN, Ho TM, Vuong LN, García-Velasco J. An update on the current indications for in vitro maturation. Curr Opin Obstet Gynecol. 2024 Jun 1;36(3):173–180. DOI: 10.1097/GCO.0000000000000942. Epub 2024 Jan 31. PMID: 38295060.

4. Nejabati HR, Roshangar L, Nouri M. Follicular f luid extracellular vesicle miRNAs and ovarian aging. Clin Chim Acta. 2023 Jan 1;538:29–35. DOI: 10.1016/j.cca.2022.11.003. Epub 2022 Nov 8. PMID: 36368351.

5. Zhou Z, Zhang Y, Zhang X, et al. Follicular Fluid-Derived Small Extracellular Vesicles Alleviate DHEA-Induced Granulosa Cell Apoptosis by Delivering LINC00092. Reprod Sci. 2023 Oct;30(10):3092–3102. DOI: 10.1007/s43032-023-01251-7. Epub 2023 May 15. PMID: 37188981.

6. Sysoeva AP, Makarova NP, Silachev DN, et al. Influence of Extracellular Vesicles of the Follicular Fluid on Morphofunctional Characteristics of Human Sperm. Bull Exp Biol Med. 2021 Dec;172(2):254–262. DOI: 10.1007/s10517-021-05372-4. Epub 2021 Dec 2. PMID: 34855079.

7. Neyroud AS, Chiechio RM, Moulin G, et al. Diversity of Extracellular Vesicles in Human Follicular Fluid: Morphological Analysis and Quantification. Int J Mol Sci. 2022 Oct 2;23(19):11676. DOI: 10.3390/ijms231911676. PMID: 36232981; PMCID: PMC9570429.

8. Gabryś J, Kij-Mitka B, Sawicki S, et al. Extracellular vesicles from follicular fluid may improve the nuclear maturation rate of in vitro matured mare oocytes. Theriogenology. 2022 Aug;188:116–124. DOI: 10.1016/j.theriogenology.2022.05.022. Epub 2022 May 27. PMID: 35689941.

9. Makarova NP, Sysoeva AP, Sylachev DN, et al. Technology for human oocyte maturation at Gv-stage using extracellular follicular fluid vesicles in fertilization programs in vitro:v-ivm (extracellular vesicles in vitro maturation) No 2023101793: date of filling: 27.01.2023: published: 15.11.2023. Proprietor(s): Federalnoe gosudarstvennoe byudzhetnoe uchrezhdenie “Natsionalnyj meditsinskij issledovatel`skij centr akusherstva, ginekologii i perinatologii imeni akademika V. I. Kulakova” Ministerstva zdravookhraneniya Rossijskoj Federatsii (RU) - EDN WEZOFP. In Russian

10. Order of the Ministry of Health of the Russian Federation (RU) 31.07.2020 No 803n “About the procedure for the use of assisted reproductive technologies, contraindications and restrictions to their use” (Registration 19.10.2020 No 60457). Text: web-site // Official Internet portal of legal information: – URL: http://publication.pravo. gov.ru/Document/View/0001202010190041?. In Russian

11. Clinical recommendations. Female infertility. 2024. Text: electronic // Ministry of Health of the Russian Federation: official website. – URL: https://mosgorzdrav.ru/ru-RU/magic/default/download/14971.html (data obrashcheniya: 01.12.2024). In Russian

12. Welsh JA, Goberdhan DCI, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024 Feb;13(2):e12404. DOI: 10.1002/jev2.12404. Erratum in: J Extracell Vesicles. 2024 May;13(5):e12451. DOI: 10.1002/jev2.12451. PMID: 38326288; PMCID: PMC10850029.

13. Kenigsberg S, Wyse BA, Librach CL, da Silveira JC. Protocol for exosome isolation from small volume of ovarian follicular fluid: evaluation of ultracentrifugation and commercial kits // Methods Mol. Biol. 2017. Vol. 1660. P. 321–341. DOI: 10.1007/978-1-4939-7253-1_26.

14. Zorova LD, Kovalchuk SI, Popkov VA, et al. Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria? Int J Mol Sci. 2022 Jul 3;23(13):7408. DOI: 10.3390/ijms23137408. PMID: 35806411; PMCID: PMC9266972.

15. Martinez CA, Rizos D, Rodriguez-Martinez H, Funahashi H. Oocyte-cumulus cells crosstalk: New comparative insights. Theriogenology. 2023 Jul 15;205:87 93. DOI: 10.1016/j.theriogenology.2023.04.009. Epub 2023 Apr 18. PMID: 37105091.

16. Nagyova E. The Biological Role of Hyaluronan Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int J Mol Sci. 2018 Jan 18;19(1):283. DOI: 10.3390/ijms19010283. PMID: 29346283; PMCID: PMC5796229.

17. Del Bianco D, Gentile R, Sallicandro L, et al. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci. 2024 May 14;25(10):5349. DOI: 10.3390/ijms25105349. PMID: 38791387; PMCID: PMC11120766.

18. Machtinger R, Racowsky C, Baccarelli AA, et al. Recombinant human chorionic gonadotropin and gonadotropin-releasing hormone agonist differently affect the profile of extracellular vesicle microRNAs in human follicular fluid. J Assist Reprod Genet. 2023;40:527–536. https://doi.org/10.1007/s10815-022-02703-w

19. Piibor J, Dissanayake K, Midekessa G, et al. Characterization of bovine uterine fluid extracellular vesicles proteomic profiles at follicular and luteal phases of the oestrous cycle. Vet Res Commun. 2023;47:885–900. https://doi.org/10.1007/s11259-022-10052-3

20. Aoki S, Inoue Y, Hara S, et al. microRNAs associated with the quality of follicular fluids affect oocyte and early embryonic development. Reprod Med Biol. 2024 Jan 18;23(1):e12559. DOI: 10.1002/rmb2.12559. PMID: 38239486; PMCID: PMC10795439.

21. Luis-Calero M, Marinaro F, et al. Characterization of preovulatory follicular fluid secretome and its effects on equine oocytes during in vitro maturation. Res Vet Sci. 2024 May;171:105222. DOI: 10.1016/j.rvsc.2024.105222. Epub 2024 Mar 11. PMID: 38513461.

22. Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Negl Trop Dis. 2019;13(1):e0007032. https://doi.org/10.1371/journal.pntd.0007032


Review

For citations:


Zingerenko B.V., Makarova N.P., Sysoeva A.P., Evtushenko E.A., Kulakova E.V., Kalinina E.A. А new technology for maturation of human oo cytes by injection of extracellular vesicles of follicular donor fluid under the shiny shell of the female gamete. Translational Medicine. 2025;12(1):17-26. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-1-17-26. EDN: UXLPNN

Views: 108


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)