ТЕХНИЧЕСКИЕ ОСНОВЫ И КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ ДЛЯ ОЦЕНКИ ПЕРФУЗИИ МИОКАРДА КАК САМОСТОЯТЕЛЬНОЙ ПРОЦЕДУРЫ И В СОСТАВЕ ГИБРИДНЫХ СИСТЕМ
https://doi.org/10.18705/2311-4495-2015-0-5-113-122
Аннотация
Об авторах
Д. В. РыжковаРоссия
А. Р. Салахова
Россия
Список литературы
1. Терновой С. К., Веселова Т. Н. Выявление нестабильных бляшек в коронарных артериях с помощью мультиспиральной компьютерной томографии. REJR. 2014;4(1):7-13.
2. Knaapen P, Haan S, Hoekstra OS et al. Cardiac PET-CT: advanced hybrid imaging for the detection of coronary artery disease. Neth Heart J. 2010;18:90-98.
3. Рыжкова Д. В., Нифонтов Е. М., Тютин Л. А. Позитронная эмиссионная томография как метод неинвазивной оценки миокардиального кровотока и коронарного резерва у пациентов с сердечно-сосудистой патологией (литературный обзор). Артериальная гипертензия. 2006;12(3):200-211.
4. Рыжкова Д. В. Позитронная эмиссионная томография в комплексной диагностике ишемической болезни сердца: дис.. докт. мед. наук: 14.01.13. Томск, 2008: 342 с.
5. LammertsmaAA, De Silva R,Araujo LL Jones T. Measurement of regional myocardial blood flow using C15O2 and positron emission tomography: comparison of tracer models. Clin Phys Physiol Meets. 1992;13:1-20.
6. Prior JO, Allenbach G, Valenta I et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: Clinical validation with 15O-water. Eur J Nucl Med Mol Imaging. 2012;39:1037-1047.
7. Danad I, Uusitalo V, Kero T, Saraste A et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: Cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol. 2014;64:1464-1475.
8. Lubberink М, Harms HJ, Halbmeijer R. Low-Dose Quantitative Myocardial Blood Flow Imaging Using 15O-Water and PET Without Attenuation Correction. J Nucl Med. 2010;51:575-580.
9. Рыжкова Д. В. Позитронная эмиссионная томография в диагностике заболеваний сердечно-сосудистой системы // в кн.: Лишманов Ю. Б., Чернов В. И. (ред.), Национальное руководство по радионуклидной диагностике. Томск: .
10. Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol. 2004;11:71-86.
11. Hutchins GD. Quantitative evaluation ofmyocardial blood flow with 13 N-ammonia. Cardiology. 1997;88 (1):106-115. 1 3. Yalamanchili P, Hayes WE, Bozek J. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14 (6):782-788.
12. Maddahi J, Czernin J, Lazewatsky J. Phase I, First-in-Human Study of BMS747158, a Novel 18F-Labeled Tracer for Myocardial Perfusion PET: Dosimetry, Biodistribution, Safety, and Imaging Characteristics After a Single Injection at Rest. J Nucl Med. 2011;52:1490-1498.
13. Herrero P, Hartman IT, Green MA et al. Regional myocardial perfusion assessed with generator-produced copper-62-PTSM and PET. J Nucl Med. 1996;37:1294-1300.
14. Qkazawa H, Yonekura Y, Fujibayashi Y et al. Measurement of regional cerebral blood flow with copper-62-PTSM animal three-compartment model. J Nucl Med. 1996;37:1089-1093.
15. Wallhaus TR, Lacy J, Whang J, Green MA, Nickles RJ, Stone CK. Human biodistribution and dosimetry of the PET perfusion agent Copper-62-PTSM. J Nucl Med. 1998;39:1958-1964.
16. Gould K. L. Coronary artery stenosis and reversing atherosclerosis. Arnold, 1999: 689 pp.
17. Kaufmann PA, Camici PG. Myocardial Blood Flow Measurement by PET: Technical Aspects and Clinical Applications. J Nucl Med. 2005;45:75-88.
18. Hamilton GW, Narahara KA, Yee H, Ritchie JL, Williams DL, Gould KL. Myocardium imaging with Tallium -201 : effect of cardiac drugs on myocardial imaging and absolute tissue distribution. J Nucl Med. 1978;19:10-16.
19. Shah A, Schelbert HR, Schwaiger M, Henze E, Hansen H, Selin C, Huang SC. Measurement of regional myocardial blood flow with N-13 ammonia and positron emission tomography in intact dogs. J Am Coll Cardiol. 1985;5(1):92-100.
20. Bol A, Melin JA, Vanoverschelde JL et.al. Direct comparison of [13N]-ammonia and [15O]-water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation. 1993;87(2):512-525.
21. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O'Brien HA Jr. Myocardial perfusion rubidium-82. II. The effects of metabolic and pharmacologic interventions. J Nucl Med. 1986;24(10):907-915.
22. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, Shin SA, Chung JK, Lee MC. Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis. J Nucl Med. 2001;42(5):782-787.
23. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951;3:1-41.
24. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14(3):639-652.
25. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Quantification of regional myocardialblood flow in vivo with H2I5O. Circulation. 1984;70 (4):724-733.
26. Araujo LI, Lammertsrna AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation. 1991;83(3):875-885.
27. Hutchins GD1, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15(5):1032-1042.
28. Choi Y, Huang S-C, Hawkins RA et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med.1999;40(6):1045-1055.
29. Бокерия Л. А., Асланиди И. П., Шурупова И. В. Оценка миокардиальной перфузии // в кн.: Бокерия Л. А., Асланиди И. П., Шурупова И. В. (ред.), Позитронно-эмиссионная томография в каридологии и сердечно-сосудистой хирургии. - М.: изд. “НЦССХ им. А. Н. Бакулева РАМН”, 2010. - С. 69-115.
30. Herrero P1, Markham J, Shelton ME, Weinheimer CJ, Bergmann SR. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography: exploration of a mathematical model. Circulation. 1990;82 (4):1377-1386.
31. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary disease. Circulation. 2007; 115:1464-1480.
32. Bateman TM, Heller GV, McGhie AL et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24-33.
33. Berman DS, Maddahi J, Tamarappoo BK et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469-477.
34. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between Myocardial Blood Flow and the Severity of Coronary-Artery Stenosis. Eng J Med. 1994;330 (25):1782-1788
35. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation. 1987;75:723-732.
36. Ryzhkova DV, Mostova MI, Zverev OG et al. Use of positron emission tomography and [13N]-ammonia to estimate the relationship between regional myocardial blood flow and coronary artery stenosis severity in patients with coronary heart disease. Eur Radiology. 2005;15 (Suppl. 1):402.
37. Demer LL, Gould KL, Goldstein RA et al. Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative arteriography in 193 patients. Circulation. 1989;79(4):825-835.
38. Gould KL. Functional measures of coronary stenosis severity at cardiac catheterization. J Am Coll Cardiol. 1990;16:198-199.
39. Danad I, Uusitalo V, Kero T et al. Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease. Cutoff Values and Diagnostic Accuracy of Quantitative [15O]H2O PET Imaging. J Am Coll Cardiol. 2014;64 (14):1464-1475.
40. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation. 1982;66:930-937.
41. Kirkeeide R. L., Gould K. L., Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol. 1986;7:103-113.
42. Синицын В. Е. Мультиспиральная и электроннолучевая томография сердца // в кн.: Шляхто Е. В. (ред.), Кардиология. - Москва: “ГЕОТАР-Медиа”, 2015. - С. 139-148.
43. Fischer JJ, Samady H, Pherson JA et al. Comparison between visual assessment and quantitative angiography versus fractional How reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:205-210.
44. Heller LA, Gates C, Popma J et al. Intracoronary Doppler assessment of moderate coronary artery disease: comparison with 20IT1 imaging and coronary angiography. FACTS study group. Circulation. 1997;96(2):484-490.
45. Okayama H, Sumimoto T, Hiasa G et al. Assessment of intermediate steno sis in the left anterior descending coronary artery with contrast-enhanced transthoracic Doppler echocardiography. Coron Artery Dis. 2003;14:247-254.
46. Di Carli MF, Murthy VL. Cardiac PET/CT for the evaluation of known or suspected coronary artery disease. Radiographics. 2011;31:1239-1254.
47. Kajander S, Joutsiniemi E, Saraste M et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122(6):603-613.
48. Murthy VL, Naya M, Foster CR et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215-2224.
49. Naya M, Murthy VL, Taqueti VR et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248-255.
50. Ziadi MC, Dekemp RA, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670-680.
51. Murthy VL, Naya M, Foster CR et al. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. JACC Cardiovasc Imaging. 2012;5:1025-1034.
52. Naya M, Murthy VL, Foster CR et al. Prognostic interplay of coronary artery calcification and underlying vascular dysfunction in patients with suspected coronary artery disease. J Am Coll Cardiol. 2013;61:2098-2106.
53. Murthy VL, Naya M, Foster CR et al. Association between Coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858-1868.
54. Schenker MP, Dorbala S, Hong EC et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117:1693-1700.
55. Chang S. M., Nabi F., Xu J., et al. The coronary artery calcium score and stress myocardial perfusion imaging provide independent and complementary prediction of cardiac risk. J Am Coll Cardiol. 2009;54:1872-1882.
56. Jaarsma C., Leiner T., Bekkers S. C., et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719-1728. 5(34) / 2015
57. Kurita T., Sakuma H., Onishi K., et al. Regional myocardial perfusion reserve determined using myocardial perfusion magnetic resonance imaging showed a direct correlation with coronary flow velocity reserve by Doppler flow wire. Eur Heart J. 2009;30:444-452.
58. Costa M.A., Shoemaker S., Futamatsu H., et al. Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol. 2007;50:514-522.
59. Adenaw N, Salerno M. PET/MRI: current state of the art and future potential for cardiovascular applications. J Nucl Cardiol. 2013;20:976-989.
Рецензия
Для цитирования:
Рыжкова Д.В., Салахова А.Р. ТЕХНИЧЕСКИЕ ОСНОВЫ И КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ ПОЗИТРОННОЙ ЭМИССИОННОЙ ТОМОГРАФИИ ДЛЯ ОЦЕНКИ ПЕРФУЗИИ МИОКАРДА КАК САМОСТОЯТЕЛЬНОЙ ПРОЦЕДУРЫ И В СОСТАВЕ ГИБРИДНЫХ СИСТЕМ. Трансляционная медицина. 2015;(5):113-122. https://doi.org/10.18705/2311-4495-2015-0-5-113-122
For citation:
Ryzhkova D.V., Salakhova A.R. Technical advances and clinical application of cardiac positron emission tomography for myocardial perfusion assessment as a stand alone technique and having been integrated in the hybrid imaging systems. Translational Medicine. 2015;(5):113-122. (In Russ.) https://doi.org/10.18705/2311-4495-2015-0-5-113-122