Использование кросслинкеров для иммобилизации биораспознающих элементов в импедиметрических биосенсорных системах обнаружения белковых маркеров заболеваний
https://doi.org/10.18705/2311-4495-2024-11-3-264-283
Аннотация
Одними из наиболее перспективных типов биосенсорных систем для детектирования белковых маркеров заболеваний являются импедиметрические биосенсоры. Важной задачей при разработке таких сенсоров является иммобилизация биораспознающих элементов на поверхности электродов. Молекулы, которые содержат активные функциональные группы и обеспечивают связывание поверхности электродов с функциональными группами биораспознавателей, называют сшивающими агентами, или кросслинкерами. В данном обзоре рассмотрены различные типы кросслинкеров, применяемые для иммобилизации биораспознающих элементов на поверхности электродов из различных материалов, а также описаны технологические особенности их использования для создания биосенсорных структур для обнаружения маркерных белков. Данный обзор будет полезен специалистам в медицинской химии, биохимии и нанотехнологии.
Ключевые слова
Об авторах
А. А. РябкоРоссия
Рябко Андрей Андреевич, к.т.н., младший научный сотрудник лаборатории неравновесных процессов в полупроводниках
Санкт-Петербург
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Н. О. Ситков
Россия
Ситков Никита Олегович, к.т.н., ассистент кафедры микро- и наноэлектроники, ФГАОУ ВО СПбГЭТУ «ЛЭТИ» им. В. И. Ульянова (Ленина); старший научный сотрудник НЦМУ «Центр персонализированной медицины», ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России
ул. Профессора Попова, д. 5, лит. Ф, Санкт-Петербург, 197376
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Е. Н. Марценюк
Россия
Марценюк Елизавета Николаевна, студент, кафедра микро- и наноэлектроники
Санкт-Петербург
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Т. М. Зимина
Россия
Зимина Татьяна Михайловна, к.ф.-м.н., доцент кафедры микро- и наноэлектроники, ФГАОУ ВО СПбГЭТУ «ЛЭТИ» им. В. И. Ульянова (Ленина); старший научный сотрудник НИЛ нанотехнологий, ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России
Санкт-Петербург
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
К. Г. Гареев
Россия
Гареев Камиль Газинурович, к.т.н., доцент кафедры микро- и наноэлектроники, ФГАОУ ВО СПбГЭТУ «ЛЭТИ» им. В. И. Ульянова (Ленина); старший научный сотрудник НЦМУ «Центр персонализированной медицины», ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России
Санкт-Петербург
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
М. А. Шевцов
Россия
Шевцов Максим Алексеевич, д.б.н., заведующий НИО трансляционной онкологии, НЦМУ «Центр персонализированной медицины»
Санкт-Петербург
Конфликт интересов:
Авторы заявили об отсутствии потенциального конфликта интересов.
Список литературы
1. Wang X, Huang J, Chen W, et al. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Experimental & Molecular Medicine. 2022 Sep;54(9):1390–400. DOI: 10.1038/s12276-022-00855-4.
2. Tumani H, Brettschneider J. Biochemical markers of autoimmune diseases of the nervous system. Current pharmaceutical design. 2012 Oct 1;18(29):4556–63. DOI: 10.2174/138161212802502143.
3. Ogulur I, Pat Y, Ardicli O, Barletta E, et al. Advances and highlights in biomarkers of allergic diseases. Allergy. 2021 Dec;76(12):3659–86. DOI: 10.1111/all.15089.
4. Song JG, Baral KC, Kim GL, et al. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Delivery. 2023 Dec 31;30(1):2183816. DOI: 10.1080/10717544.2023.2183816.
5. Swami S, Kayenat F, Wajid S. SPR biosensing: Cancer diagnosis and biomarkers quantification. Microchemical Journal. 2024 Feb 1;197:109792. DOI: 10.1016/j.microc.2023.109792.
6. Zimina TM, Sitkov NO, Gareev KG, et al. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. Biosensors. 2022 Sep 25;12(10):789. DOI: 10.3390/bios12100789.
7. Singh AK, Mittal S, Das M, et al. Optical biosensors: A decade in review. Alexandria Engineering Journal. 2023 Mar 15;67:673–91. DOI: 10.1016/j.aej.2022.12.040.
8. Sitkov NO, Karasev VA, Luchinin VV, et al. Development of biosensors for express-detection of protein markers of diseases in blood using peptide biorecognition elements. InAIP Conference Proceedings 2019 Aug 9 (Vol. 2140, No. 1). AIP Publishing. DOI: 10.1063/1.5121997.
9. Antiochia R. Electrochemical biosensors for SARS-CoV-2 detection: Voltametric or impedimetric transduction? Bioelectrochemistry. 2022 Oct 1;147:108190. DOI: 10.1016/j.bioelechem.2022.108190.
10. Sohrabi H, Kordasht H, Pashazadeh-Panahi P, et al. Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchemical Journal. 2020 Nov 1;158:105287. DOI: 10.1016/j.microc.2020.105287.
11. Yang T, Wang S, Jin H, et al. An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sensors and Actuators B: Chemical. 2013 Mar 1;178:310–5. DOI: 10.1016/j.snb.2012.12.107.
12. Vasantham S, Alhans R, Singhal C, et al. Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomedical Microdevices. 2020 Mar;22:1–9. DOI: 10.1007/s10544-019-0463-0.
13. Moreira FT, Dutra RA, Noronha JP, et al. Novel sensory surface for creatine kinase electrochemical detection. Biosensors and Bioelectronics. 2014 Jun 15;56:217–22. DOI: 10.1016/j.bios.2013.12.052.
14. Sun L, Li W, Wang M, et al. Development of an electrochemical impedance immunosensor for myoglobin determination. International Journal of Electrochemical Science. 2017 Jul 1;12(7):6170–9. DOI: 10.20964/2017.07.72.
15. Ghedir EK, Baraket A, Benounis M, et al. Electrochemical Multiplexed N-Terminal Natriuretic Peptide and Cortisol Detection in Human Artificial Saliva: Heart Failure Biomedical Application. Chemosensors. 2023 Jul 24;11(7):416. DOI: 10.3390/chemosensors11070416.
16. Pihíková D, Belicky Š, Kasák P, et al. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst. 2016;141(3):1044–51. DOI: 10.1039/C5AN02322J.
17. Razmi N, Hasanzadeh M. Current advancement on diagnosis of ovarian cancer using biosensing of CA 125 biomarker: Analytical approaches. TrAC Trends in Analytical Chemistry. 2018 Nov 1;108:1–2. DOI: 10.1016/j.trac.2018.08.017.
18. Taheri N, Khoshsafar H, Ghanei M, et al. Dual-template rectangular nanotube molecularly imprinted polypyrrole for label-free impedimetric sensing of AFP and CEA as lung cancer biomarkers. Talanta. 2022 Mar 1;239:123146. DOI: 10.1016/j.talanta.2021.123146.
19. Karaboğa MN, Şimşek ÇS, Sezgintürk MK. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70. Biosensors and Bioelectronics. 2016 Oct 15;84:22–9. DOI: 10.1016/j.bios.2015.08.044.
20. Park JS, Kim HJ, Lee JH, et al. Amyloid beta detection by faradaic electrochemical impedance spectroscopy using interdigitated microelectrodes. Sensors. 2018 Feb 1;18(2):426. DOI: 10.3390/s18020426.
21. Karaboga MN, Sezgintürk MK. Analysis of Tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: Towards Alzheimer’s disease detection. Talanta. 2020 Nov 1;219:121257. DOI: 10.1016/j.talanta.2020.121257.
22. Zeng J, Duarte PA, Ma Y, Savchenko O, et al. An impedimetric biosensor for COVID-19 serology test and modification of sensor performance via dielectrophoresis force. Biosensors and Bioelectronics. 2022 Oct 1;213:114476. DOI: 10.1016/j.bios.2022.114476.
23. Shariati M. Impedimetric biosensor for monitoring complementary DNA from hepatitis B virus based on gold nanocrystals. Journal of The Electrochemical Society. 2021 Jan 27;168(1):016512. DOI: 10.1149/1945-7111/abdc72.
24. Nandi S, Mondal A, Roberts A, et al. Biosensor platforms for rapid HIV detection. Advances in Clinical Chemistry. 2020 Jan 1;98:1–34. DOI: 10.1016/bs.acc.2020.02.001.
25. Bertok T, Lorencova L, Chocholova E, et al. Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem. 2019 Feb 15;6(4):989– 1003. DOI: 10.1002/celc.201900061.
26. Sitkov N, Ryabko A, Moshnikov V, et al. Hybrid Impedimetric Biosensors for Express Protein Markers Detection. Micromachines. 2024 Jan 25;15(2):181. DOI: 10.3390/mi15020181.
27. Shimizu FM, de Barros A, Braunger ML, et al. Information visualization and machine learning driven methods for impedimetric biosensing. TrAC Trends in Analytical Chemistry. 2023 May 29:117115. DOI: 10.1016/j.trac.2023.117115.
28. Robinson C, Juska VB, O’Riordan A. Surface chemistry applications and development of immunosensors using electrochemical impedance spectroscopy: A comprehensive review. Environmental Research. 2023 Aug 12:116877. DOI: 10.1016/j.envres.2023.116877
29. Cholewinski A, Si P, Uceda M, et al. Polymer binders: Characterization and development toward aqueous electrode fabrication for sustainability. Polymers. 2021 Feb 20;13(4):631. DOI: 10.3390/polym13040631.
30. Smith S, Goodge K, Delaney M, et al. A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers. Nanomaterials. 2020 Oct 27;10(11):2142. DOI: 10.3390/nano10112142
31. Alavarse AC, Frachini EC, da Silva RL, et al. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. International journal of biological macromolecules. 2022 Mar 31;202:558–96. DOI: 10.1016/j.ijbiomac.2022.01.029.
32. Bhattacharjee P, Ahearne M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics. 2021 Feb 28;13(3):319. DOI: 10.3390/pharmaceutics13030319.
33. Sapsford KE, Algar WR, Berti L, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chemical reviews. 2013 Mar 13;113(3):1904–2074. DOI:10.1021/cr300143v.
34. Bryan T, Luo X, Bueno PR, et al. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosensors and Bioelectronics. 2013 Jan 15;39(1):94–8. DOI: 10.1016/j.bios.2012.06.051.
35. Pal A, Biswas S, Kare SP, et al. Development of an impedimetric immunosensor for machine learning-based detection of endometriosis: A proof of concept. Sensors and Actuators B: Chemical. 2021 Nov 1;346:130460. DOI: 10.1016/j.snb.2021.130460.
36. Alsabbagh K, Hornung T, Voigt A, et al. Microfluidic Impedance Biosensor Chips Using Sensing Layers Based on DNA-Based Self-Assembled Monolayers for Label-Free Detection of Proteins. Biosensors. 2021 Mar 13;11(3):80. DOI: 10.3390/bios11030080.
37. YaĞar H, Özcan HM, Mehmet O. A new electrochemical impedance biosensor based on aromatic thiol for alpha-1 antitrypsin determination. Turkish journal of chemistry. 2021;45(1):104–18. DOI: 10.3906/kim-2007-6.
38. Cecchetto J, Carvalho FC, Santos A, et al. An impedimetric biosensor to test neat serum for dengue diagnosis. Sensors and Actuators B: Chemical. 2015 Jul 5;213:150–4. DOI: 10.1016/j.snb.2015.02.068.
39. Schrattenecker JD, Heer R, Hainberger R, et al. Impedimetric IgG-Biosensor with In-Situ Generation of the Redox-Probe. InProceedings 2017 Aug 4 (Vol. 1, No. 4, p. 534). MDPI. DOI: 10.3390/proceedings1040534.
40. Chinnadayyala SR, Park J, Abbasi MA, et al. Label-free electrochemical impedimetric immunosensor for sensitive detection of IgM rheumatoid factor in human serum. Biosensors and Bioelectronics. 2019 Oct 15;143:111642. DOI: 10.1016/j.bios.2019.111642.
41. Aydın EB, Sezgintürk MK. Ultrasensitive detection of interleukin 1α using 3-phosphonopropionic acid modified FTO surface as an effective platform for disposable biosensor fabrication. Bioelectrochemistry. 2021 Apr 1;138:107698. DOI: 10.1016/j.bioelechem.2020.107698.
42. Aydın EB, Sezgintürk MK. An impedimetric immunosensor for highly sensitive detection of IL-8 in human serum and saliva samples: A new surface modification method by 6-phosphonohexanoic acid for biosensing applications. Analytical biochemistry. 2018 Aug 1;554:44–52. DOI: 10.1016/j.ab.2018.05.030.
43. Gündoğdu A, Aydın EB, Sezgintürk MK. A novel electrochemical immunosensor based on ITO modified by carboxyl-ended silane agent for ultrasensitive detection of MAGE-1 in human serum. Analytical biochemistry. 2017 Nov 15;537:84–92. DOI: 10.1016/j.ab.2017.08.018.
44. Rohrbach F, Karadeniz H, Erdem A, et al. Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Analytical biochemistry. 2012 Feb 15;421(2):454–9. DOI: 10.1016/j.ab.2011.11.034.
45. Kara P, de la Escosura-Muñiz A, Maltez-da Costa M, et al. Aptamers based electrochemical biosensor for protein detection using carbon nanotubes platforms. Biosensors and Bioelectronics. 2010 Dec 15;26(4):1715–8. DOI: 10.1016/j.bios.2010.07.090.
46. Jozghorbani M, Fathi M, Kazemi SH, et al. Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Analytical biochemistry. 2021 Jan 15;613:114017. DOI: 10.1016/j.ab.2020.114017.
47. Yagati AK, Pyun JC, Min J, et al. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry. 2016 Feb 1;107:37–44. DOI:10.1016/j.bioelechem.2015.10.002.
48. Frias IA, Zine N, Sigaud M, et al. Non-covalent π–π functionalized Gii-sense graphene foam for interleukin 10 impedimetric detection. Biosensors and Bioelectronics. 2023 Feb 15;222:114954. DOI: 10.1016/j.bios.2022.114954.
49. Demirbakan B, Sezgintürk MK. An impedimetric biosensor system based on disposable graphite paper electrodes: Detection of ST2 as a potential biomarker for cardiovascular disease in human serum. Analytica Chimica Acta. 2021 Feb 1;1144:43–52. DOI: 10.1016/j.aca.2020.12.001.
50. Brodowski M, Kowalski M, Skwarecka M, et al. Highly selective impedimetric determination of Haemophilus influenzae protein D using maze-like boron-doped carbon nanowall electrodes. Talanta. 2021 Jan 1;221:121623. DOI: 10.1016/j.talanta.2020.121623.
51. Aydın EB, Aydın M, Sezgintürk MK. Fabrication of electrochemical immunosensor based on acid-substituted poly (pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta. 2021 Jan 15;222:121487. DOI: 10.1016/j.talanta.2020.121487.
52. Gandarilla AM, Glória JC, Barcelay YR, et al. Application of egg yolk IgY on carboxylated polypyrrole films for impedimetric detection of PfHRP2 antigen. Bioelectrochemistry. 2022 Dec 1;148:108273. DOI: 10.1016/j.bioelechem.2022.108273.
53. Yuan G, He J, Li Y, et al. A novel ultrasensitive electrochemical immunosensor based on carboxyendcapped conductive polypyrrole for the detection of gypican-3 in human serum. Analytical methods. 2015;7(5):1745–50. DOI: 10.1039/c4ay02820a.
54. Kim M, Iezzi Jr R, Shim BS, et al. Impedimetric biosensors for detecting vascular endothelial growth factor (VEGF) based on poly (3, 4-ethylene dioxythiophene) (PEDOT)/gold nanoparticle (Au NP) composites. Frontiers in Chemistry. 2019 Apr 16;7:234. DOI: 10.3389/fchem.2019.00234.
55. Ghanavati M, Tadayon F, Bagheri H. A novel label-free impedimetric immunosensor for sensitive detection of prostate specific antigen using Au nanoparticles/ MWCNTs-graphene quantum dots nanocomposite. Microchemical Journal. 2020 Dec 1;159:105301. DOI: 10.1016/j.microc.2020.105301.
56. Vijayaraghavan P, Wang YY, Palanisamy S, et al. Hierarchical ensembles of FeCo metal-organic frameworks reinforced nickel foam as an impedimetric sensor for detection of IL-1RA in human samples. Chemical Engineering Journal. 2023 Feb 15;458:141444. DOI: 10.1016/j.cej.2023.141444.
57. Gupta A, Sharma SK, Pachauri V, et al. Sensitive impedimetric detection of troponin I with metal– organic framework composite electrode. RSC advances. 2021;11(4):2167–74. DOI: 10.1039/d0ra06665f.
58. Centane S, Mgidlana S, Openda Y, et al. Electrochemical detection of human epidermal growth factor receptor 2 using an aptamer on cobalt phthalocyanines–Cerium oxide nanoparticle conjugate. Bioelectrochemistry. 2022 Aug 1;146:108146. DOI: 10.1016/j.bioelechem.2022.108146.
59. Januarie KC, Oranzie M, Feleni U, et al. Quantum dot amplified impedimetric aptasensor for interferon-gamma. Electrochimica Acta. 2023 Sep 20;463:142825. DOI: 10.1016/j.electacta.2023.142825.
60. Abazar F, Noorbakhsh A. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sensors and Actuators B: Chemical. 2020 Feb 1;304:127281. DOI: 10.1016/j.snb.2019.127281.
61. Ruecha N, Shin K, Chailapakul O, et al. Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sensors and Actuators B: Chemical. 2019 Jan 15;279:298–304. DOI: 10.1016/j.snb.2018.10.024.
62. Tertis M, Leva PI, Bogdan D, et al. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosensors and Bioelectronics. 2019 Jul 15;137:123–32. DOI: 10.1016/j.bios.2019.05.012.
63. Tanak AS, Jagannath B, Tamrakar Y, et al. Non-faradaic electrochemical impedimetric profiling of procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Analytica chimica acta: X. 2019 Nov 1;3:100029. DOI: 10.1016/j.acax.2019.100029.
64. Wang SX, Acha D, Shah AJ, et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosensors and bioelectronics. 2017 Jun 15;92:482–8. DOI: 10.1016/j.bios.2016.10.077.
65. Messaoud NB, Dos Santos MB, Trocado V, et al. A novel label-free electrochemical immunosensor for detection of surfactant protein B in amniotic fluid. Talanta. 2023 Jan 1;251:123744. DOI: 10.1016/j.talanta.2022.123744.
66. Shamsuddin SH, Gibson TD, Tomlinson DC, et al. Reagentless Affimer-and antibody-based impedimetric biosensors for CEA-detection using a novel non-conducting polymer. Biosensors and Bioelectronics. 2021 Apr 15;178:113013. DOI: 10.1016/j.bios.2021.113013.
67. Erdem A, Congur G. Dendrimer enriched single-use aptasensor for impedimetric detection of activated protein C. Colloids and Surfaces B: Biointerfaces. 2014 May 1;117:338–45. DOI: 10.1016/j.colsurfb.2014.03.003.
68. Erdem A, Congur G. Dendrimer modified 8-channel screen-printed electrochemical array system for impedimetric detection of activated protein C. Sensors and Actuators B: Chemical. 2014 Jun 1;196:168–74. DOI: 10.1016/j.snb.2014.01.103.
69. Senturk H, Eksin E, Işık Ö, et al. Impedimetric aptasensor for lysozyme detection based on carbon nanofibres enriched screen-printed electrodes. Electrochimica Acta. 2021 May 1;377:138078. DOI: 10.1016/j.electacta.2021.138078.
70. Caballero D, Martinez E, Bausells J, et al. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Analytica Chimica Acta. 2012 Mar 30;720:43–8. DOI: 10.1016/j.aca.2012.01.031.
71. Low YK, Chan J, Soraya GV, et al. Development of an ultrasensitive impedimetric immunosensor platform for detection of Plasmodium lactate dehydrogenase. Sensors. 2019 May 29;19(11):2446. DOI: 10.3390/s19112446.
72. Białobrzeska W, Ficek M, Dec B, et al. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosensors and Bioelectronics. 2022 Aug 1;209:114222. DOI: 10.1016/j.bios.2022.114222.
73. Zakaria N, Mohd Y, Chin LY, et al. Poly-Ortho-Phenylenediamine Modified Pt/Ir Microelectrode as Impedimetric Biosensor. International Journal of Electrochemical Science. 2021 Jan 1;16(7):210736. DOI: 10.20964/2021.07.66.
74. Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical impedance immunosensor for the quantification of CYFRA 21-1 in human serum. Microchimica Acta. 2023 Jun;190(6):235. DOI: 10.1007/s00604-023-05813-z.
75. Uygun ZO, Şahin Ç, Yılmaz M, et al. Fullerene-PAMAM (G5) composite modified impedimetric biosensor to detect Fetuin-A in real blood samples. Analytical biochemistry. 2018 Feb 1;542:11–5. DOI: 10.1016/j.ab.2017.11.007.
76. Yılmaz N, Aydın EB, Sezgintürk MK. An epoxysilane modified indium tin oxide electrode for the determination of PAK 2: application in human serum samples. Analytica chimica acta. 2019 Jul 25;1062:68–77. DOI: 10.1016/j.aca.2019.02.020.
77. Altay DN, Yagar H, Ozcan HM. A new ITO-based Aβ42 biosensor for early detection of Alzheimer’s disease. Bioelectrochemistry. 2023 Oct 1;153:108501. DOI: 10.1016/j.bioelechem.2023.108501.
78. Aydın EB. Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode. Talanta. 2020 Aug 1;215:120909. DOI: 10.1016/j.talanta.2020.120909.
79. Aydın EB, Aydın M, Sezgintürk MK. A novel electrochemical immunosensor based on acetylene black/ epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6. Talanta. 2021 Jan 15;222:121596. DOI: 10.1016/j.talanta.2020.121596.
80. Chuang YH, Chang YT, Liu KL, et al. Electrical impedimetric biosensors for liver function detection. Biosensors and Bioelectronics. 2011 Oct 15;28(1):368–72. DOI: 10.1016/j.bios.2011.07.049.
81. Filip J, Zavahir S, Klukova L, et al. Immobilization of concanavalin A lectin on a reduced graphene oxidethionine surface by glutaraldehyde crosslinking for the construction of an impedimetric biosensor. Journal of Electroanalytical Chemistry. 2017 Jun 1;794:156–63. DOI: 10.1016/j.jelechem.2017.04.019.
82. Thangsunan P, Lal N, Tiede C, et al. Affimerbased impedimetric biosensors for fibroblast growth factor receptor 3 (FGFR3): a novel tool for detection and surveillance of recurrent bladder cancer. Sensors and Actuators B: Chemical. 2021 Jan 1;326:128829. DOI: 10.1016/j.snb.2020.128829.
83. Rushworth JV, Ahmed A, Griffiths HH, et al. A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosensors and bioelectronics. 2014 Jun 15;56:83–90. DOI: 10.1016/j.bios.2013.12.036.
84. Svigelj R, Zuliani I, Grazioli C, et al. An effective label-free electrochemical aptasensor based on gold nanoparticles for gluten detection. Nanomaterials. 2022 Mar 17;12(6):987. DOI: 10.3390/nano12060987.
85. Moro G, Ferrari L, Angelini A, et al. An Impedimetric Biosensing Strategy Based on BicyclicPeptides as Bioreceptors for Monitoring h-uPA Cancer Biomarkers. Chemosensors. 2023 Apr 9;11(4):234. DOI: 10.3390/chemosensors11040234.
86. Li Y, Wang C, Li Z, Wang M, et al. Zirconiumporphyrin complex as novel nanocarrier for label-free impedimetric biosensing neuron-specific enolase. Sensors and Actuators B: Chemical. 2020 Jul 1;314:128090. DOI: 10.1016/j.snb.2020.128090.
87. Han C, Xing W, Li W, et al. Aptamers dimerization inspired biomimetic clamp assay towards impedimetric SARS-CoV-2 antigen detection. Sensors and Actuators B: Chemical. 2023 Apr 1;380:133387. DOI: 10.1016/j.snb.2023.133387.
88. Mi X, Li H, Tu Y. An Aptamer Biosensing Strategy for Label-Free Assay of Dual Acute Myocardial Infarction Biomarkers Built upon AuNPs/Ti3C2-MXenes. Chemosensors. 2023 Feb 24;11(3):157. DOI:10.3390/chemosensors11030157.
89. Cao L, Kiely J, Piano M, et al. Nanoparticle-based 3D membrane for impedimetric biosensor applications. Bioelectrochemistry. 2020 Dec 1;136:107593. DOI: 10.1016/j.bioelechem.2020.107593.
90. Cao L, Kiely J, Piano M, et al. A copper oxide/ zinc oxide composite nano-surface for use in a biosensor. Materials. 2019 Apr 6;12(7):1126. DOI: 10.3390/ma12071126.
91. Arkusz K, Paradowska E. Impedimetric detection of femtomolar levels of interleukin 6, interleukin 8, and tumor necrosis factor alpha based on thermally modified nanotubular titanium dioxide arrays. Nanomaterials. 2020 Nov 30;10(12):2399. DOI: 10.3390/nano10122399.
92. Sri S, Chauhan D, Lakshmi GB, et al. MoS2 nanoflower based electrochemical biosensor for TNF alpha detection in cancer patients. Electrochimica Acta. 2022 Feb 10;405:139736. DOI: 10.1016/j.electacta.2021.139736.
93. Khan R, Pal M, Kuzikov AV, et al. Impedimetric immunosensor for detection of cardiovascular disorder risk biomarker. Materials Science and Engineering: C. 2016 Nov 1;68:52–8. DOI: 10.1016/j.msec.2016.05.107.
94. Tse Sum Bui B, Mier A, Haupt K. Molecularly imprinted polymers as synthetic antibodies for protein recognition: The next generation. Small. 2023 Mar;19(13):2206453. DOI: 10.1002/smll.202206453.
95. Ben Hassine A, Raouafi N, Moreira FT. Novel electrochemical molecularly imprinted polymer-based biosensor for Tau protein detection. Chemosensors. 2021 Aug 25;9(9):238. DOI: 10.3390/chemosensors9090238.
96. Yaman YT, Vural OA, Bolat G, et al. Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6. Bioelectrochemistry. 2022 Jun 1;145:108053. DOI: 10.1016/j.bioelechem.2022.108053.
97. Karami P, Bagheri H, Johari-Ahar M, et al. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta. 2019 Sep 1;202:111–22. DOI: 10.1016/j.talanta.2019.04.061.
98. Wu CC, Singh K, Ye JX, et al. A microfluidic chip integrating electrochemical impedimetric immunosensors constructed by top-bottom opposite electrodes for rapid detection of peanut allergen-Ara h 1. Sensors and Actuators B: Chemical. 2023 Dec 1;396:134637. DOI: 10.1016/j.snb.2023.134637.
99. Torul H, Arslan ZÇ, Tezcan T, et al. Microfluidicbased blood immunoassays. Journal of Pharmaceutical and Biomedical Analysis. 2023 May 10;228:115313. DOI: 10.1016/j.jpba.2023.115313/.
100. Sitkov N, Zimina T, Kolobov A, et al. Study of the fabrication technology of hybrid microfluidic biochips for label-free detection of Proteins. Micromachines. 2021 Dec 24;13(1):20. DOI: 10.3390/mi13010020.
101. Shahbazi F, Jabbari M, Esfahani MN, et al. Microfluidic-Integrated Biosensors. InApplied Complex Flow: Applications of Complex Flows and CFD 2023 Feb 2 (pp. 21-42). Singapore: Springer Nature Singapore. DOI: 10.1007/978-981-19-7746-6_2.
Рецензия
Для цитирования:
Рябко А.А., Ситков Н.О., Марценюк Е.Н., Зимина Т.М., Гареев К.Г., Шевцов М.А. Использование кросслинкеров для иммобилизации биораспознающих элементов в импедиметрических биосенсорных системах обнаружения белковых маркеров заболеваний. Трансляционная медицина. 2024;11(3):264-283. https://doi.org/10.18705/2311-4495-2024-11-3-264-283
For citation:
Ryabko A.A., Sitkov N.O., Martsenyuk E.N., Zimina T.M., Gareev K.G., Shevtsov M.A. The use of crosslinkers for immobilization of biorecognition elements in impedimetric biosensors for protein biomarkers detection. Translational Medicine. 2024;11(3):264-283. (In Russ.) https://doi.org/10.18705/2311-4495-2024-11-3-264-283