Preview

Трансляционная медицина

Расширенный поиск

Потенциал интеграции последовательности ДВИ в комплексные МРТ исследования. Литературный обзор

https://doi.org/10.18705/311-4495-2024-11-3-253-263

Аннотация

В клинической практике активно применяется метод диффузионно-взвешенной МРТ, с помощью которой можно получить диффузионно-взвешенные изображения (ДВИ), представляющие собой методы визуализации броуновского движения молекул воды в биологических тканях. Согласно общеизвестным оценкам, организм человека примерно на 60–85 % состоит из воды, а в цитоплазме клетки, являющейся структурной и функциональной единицей живой биоткани, содержится 75–85 % воды, которая является растворителем для органических и неорганических веществ и участвует в метаболизме и терморегуляции. Диффузионно-взвешенные изображения позволяют качественно и количественно оценить информацию об особенностях движения протонов водорода в зоне интереса. Целью данного литературного обзора стояло более углубленное изучение не только спектра клинического применения последовательности ДВИ, но также ее физических основ для оптимизации протоколов сканирования путем корректирования настроек аппаратуры для получения более информативных результатов.

Об авторах

Е. В. Левандовский
Государственное учреждение «Республиканский научно-практический центр «Мать и дитя»
Беларусь

Левандовский Евгений Валерьевич, к.м.н., врач-рентгенолог кабинета рентгеновской компьютерной диагностики отделения лучевой диагностики

ул. Орловская, д. 66, Минск, 220053


Конфликт интересов:

Авторы заявили об отсутствии потенциального конфликта интересов.



Е. А. Улезко
Государственное учреждение «Республиканский научно-практический центр «Мать и дитя»
Беларусь

Улезко Елена Альбертовна, д.м.н., профессор, заместитель директора по педиатрии

Минск


Конфликт интересов:

Авторы заявили об отсутствии потенциального конфликта интересов.



М. В. Гольцев
Учреждение образования «Белорусский государственный медицинский университет»
Беларусь

Гольцев Михаил Всеволодович, к.ф.-м.н., доцент, заведующий кафедрой медицинской и биологической физики

Минск


Конфликт интересов:

Авторы заявили об отсутствии потенциального конфликта интересов.



Список литературы

1. Townsend DW. Multimodality imaging of structure and function. Phys. Med. Biol. 2008 Feb 21;53(4):1–39. DOI: 10.1088/0031-9155/53/4/R01.

2. Vilanova J, Barcelіo J. Diffusion-weighted whole-body MR screening. Eur Radiol 2008; 67: 440–447. DOI: 10.1016/j.ejrad.2008.02.040.

3. Bashir U. Diffusion-weighted imaging | Radiology Reference Article / Radiopaedia.org [Internet]. Radiopaedia. Available from: https://radiopaedia.org/articles/diffusion-weighted-imaging-2?lang=us

4. Qayyum A. Diffusion-weighted Imaging in the Abdomen and Pelvis: Concepts and Applications. RadioGraphics. 2009 Oct;29(6):1797–1810. DOI: 10.1148/rg.296095521.

5. Geva T. Magnetic Resonance Imaging: Historical Perspective. Journal of Cardiovascular Magnetic Resonance. 2006 Aug;8(4):573–580. DOI: 10.1080/10976640600755302.

6. Le Bihan D. Diffusion MRI: what water tells us about the brain. EMBO Mol Med. 2014 May;6(5):569–573. DOI: 10.1002/emmm.201404055.

7. Turner R, Le Bihan D, Maier J, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology. 1990 Nov;177(2):407–414. DOI: 10.1148/radiology.177.2.2217777.

8. Moseley M, Butts K, Yenari M, et al. Clinical Aspects of DWI. NMR in Biomedicine. 1995 Nov;8(7):387– 396. DOI: 10.1002/nbm.1940080712.

9. Warach S, Chien D, Li W, et al. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology. 1992 Sep;42(9):1717–1718. DOI: 10.1212/wnl.42.9.1717.

10. Douek P, Turner R, Pekar J, et al. MR color mapping of myelin fiber orientation. J Comput Assist Tomogr. 1991 Nov-Dec;15(6):923–929. DOI: 10.1097/00004728-199111000-00003.

11. Basser PJ, Mattiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophysical Journal [Internet]. 1994 Jan 1 [cited 2024 Jan 30];66(1):259–267. DOI: 10.1016/S0006-3495(94)80775-1.

12. Naraghi A, Awdeh H, Wadhwa V, et al. Diffusion Tensor Imaging of Peripheral Nerves. Semin Musculoskelet Radiol. 2015 Mar 12;19(2):191–200. DOI: 10.1055/s-0035-1546824.

13. Сергунова К.А., Петряйкин А.В., Ахмад Е.С. и др. Моделирование процессов диффузии в магнитно-резонансной томографии. Радиология — практика. 2019;(2):50–68.

14. Moraru L, Dimitrievici L. Apparent diffusion coefficient of the normal human brain for various experimental conditions. AIP Conf. Proc. 4 January 2017; 1796 (1): 040005. DOI:10.1063/1.4972383.

15. Гележе П.Б., Трофименко И.А., Морозов С.П. Основы интерпретации диффузионно-взвешенной томографии всего тела. Российский электронный журнал лучевой диагностики. 2015;5(3):65–73.

16. Nguyen HT, Grebenkov D, Van Nguyen D, et al. Parameter estimation using macroscopic diffusion MRI signal models. Phys Med Biol. 2015 Apr 21;60(8):3389– 3413. DOI: 10.1088/0031-9155/60/8/3389.

17. Hori M, Kamiya K, Murata K. Technical Basics of Diffusion-Weighted Imaging. Magnetic Resonance Imaging Clinics of North America. 2021 May;29(2):129– 136. DOI: 10.1016/j.mric.2021.01.001.

18. Callaghan PT, Coy A, MacGowan D, et al. Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature. 1991 Jun;351(6326):467–469.

19. Bar-Shir A, Avram L, Özarslan E, et al. The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: Experiments and simulations. Journal of Magnetic Resonance. 2008 Oct;194(2):230–236. DOI: 10.1016/j.jmr.2008.07.009.

20. Gomolka RS, Hablitz LM, Mestre H, et al. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife. 2023 Feb 9;12:1229–1233. DOI:10.7554/eLife.82232.

21. Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR in Biomedicine. 2019 Apr;32(4):3998. DOI: 10.1002/nbm.3998.

22. Feinberg DA, Moeller S, Smith SM, et al. Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging. PLoS ONE. 2010 Dec 20;5(12):e15710. DOI: 10.1371/journal.pone.0015710.

23. Obele CC, Glielmi C, Ream J, et al. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T. Abdom Imaging. 2015 Oct;40(7):2323–2330. DOI: 10.1007/s00261-015-0447-3.

24. Taron J, Martirosian P, Erb M, et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. Magnetic Resonance Imaging. 2016 Oct;44(4):865–879. DOI: 10.1002/jmri.25204.

25. Lau AZ, Tunnicliffe EM, Frost R, et al. Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn Reson Med. 2015 Mar;73(3):995– 1004. DOI: 10.1002/mrm.25200.

26. Le Bihan D, Johansen-Berg H. Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage. 2012 Jun;61(2):324–341. DOI: 10.1016/j.neuroimage.2011.11.006.

27. Mabray MC, Barajas RF, Cha S. Modern Brain Tumor Imaging. Brain Tumor Res Treat. 2015;3(1):8–23. DOI: 10.14791/btrt.2015.3.1.8.

28. Chabriat H, Pappata S, Poupon C, et al. Clinical Severity in CADASIL Related to Ultrastructural Damage in White Matter. Stroke. 1999 Dec;30(12):2637–2643. DOI: 10.1161/01.STR.30.12.2637.

29. Eichler FS, Itoh R, Barker PB, et al. Proton MR Spectroscopic and Diffusion Tensor Brain MR Imaging in X-linked Adrenoleukodystrophy: Initial Experience. Radiology. 2002 Oct;225(1):245–252. DOI: 10.1148/radiol.2251011040.

30. Hanyu H, Sakurai H, Iwamoto T, et al. Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer’s disease. Journal of the Neurological Sciences. 1998 Apr;156(2):195–200. DOI: 10.1016/s0022-510x(98)00043-4

31. Werring D, Clark C, Barker G, et al. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology. 1999 May;52(8):1626–1932. DOI: 10.1212/wnl.52.8.1626.

32. Moseley M. Diffusion tensor imaging and aging — a review. NMR in Biomedicine. 2002 Nov;15(7-8):553–560. DOI: 10.1002/nbm.785.

33. Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, et al. Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage. 2006 May;30(4):1121–1132. DOI: 10.1016/j.neuroimage.2005.11.022.

34. Engelbrecht V, Scherer A, Rassek M, et al. Diffusion-weighted MR Imaging in the Brain in Children: Findings in the Normal Brain and in the Brain with White Matter Diseases. Radiology. 2002 Feb;222(2):410–418. DOI: 10.1148/radiol.2222010492.

35. Charles-Edwards EM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 2006;6(1):135–143. DOI: 10.1102/1470-7330.2006.0021.

36. Карельская Н.А., Кармазановский Г.Г. Диффузионно-взвешенная магнитно-резонансная томография всего тела. Хирургия. 2010(8):57–60.

37. Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017 Aug 29;8(35):92–94. DOI: 10.18632/oncotarget.17752.

38. Kato H, Kanematsu M, Kato Z, et al. Necrotic cervical nodes: Usefulness of diffusion-weighted MR imaging in the differentiation of suppurative lymphadenitis from malignancy. European Journal of Radiology. 2013 Jan;82(1):e28–35. DOI: 10.1016/j.ejrad.2012.08.014.

39. Shen G, Jia Z, Deng H. Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis. Eur Radiol. 2016 Feb;26(2):556–566. DOI: 10.1007/s00330-015-3840-y.

40. Wang Y, Zhang X, Cao K, et al. Diffusion-tensor imaging as an adjunct to dynamic contrast-enhanced MRI for improved accuracy of differential diagnosis between breast ductal carcinoma in situ and invasive breast carcinoma. PubMed. 2015 Apr 1;27(2):209–217. DOI: 10.3978/j.issn.1000-9604.2015.03.04.

41. Hong B. Differential diagnosis of pancreatic cancer by single-shot echo-planar imaging diffusion-weighted imaging. WJG. 2015;21(20):6374–6380. DOI: 10.3748/wjg.v21.i20.6374.

42. Morani AC, Smith EA, Ganeshan D, Dillman JR. Diffusion-Weighted MRI in Pediatric Inflammatory Bowel Disease. American Journal of Roentgenology. 2015 Jun;204(6):1269–1277. DOI: 10.2214/AJR.14.13359.

43. Baliyan V, Das C, Sharma S, Gupta A. Diffusion-weighted imaging in urinary tract lesions. Clinical Radiology. 2014 Aug;69(8):773–782. DOI: 10.1016/j.crad.2014.01.011.

44. Sung JK, Jee W, Jung J, et al. Differentiation of Acute Osteoporotic and Malignant Compression Fractures of the Spine: Use of Additive Qualitative and Quantitative Axial Diffusion-weighted MR Imaging to Conventional MR Imaging at 3.0 T. Radiology. 2014 May;271(2):488– 498. DOI: 10.1148/radiol.13130399.

45. Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg. 2015 Jun;5(3):407–422. DOI: 10.3978/j.issn.2223-4292.2015.03.01.

46. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: Technique and applications. World J Radiol. 2016 Sep 28;8(9):785–798. DOI: 10.4329/wjr.v8.i9.785.


Рецензия

Для цитирования:


Левандовский Е.В., Улезко Е.А., Гольцев М.В. Потенциал интеграции последовательности ДВИ в комплексные МРТ исследования. Литературный обзор. Трансляционная медицина. 2024;11(3):253-263. https://doi.org/10.18705/311-4495-2024-11-3-253-263

For citation:


Levandouski Ye.V., Ulezka E.A., Goltsev M.V. The potential of integrating motion sequences into comprehensive MRT studies. Literature review. Translational Medicine. 2024;11(3):253-263. (In Russ.) https://doi.org/10.18705/311-4495-2024-11-3-253-263

Просмотров: 133


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)