Preview

Translational Medicine

Advanced search

Gene expression associated with the autophagy process in patient’s myocardium with hypertrophic cardiomyopathy of various genetic etiology

https://doi.org/10.18705/2311-4495-2024-11-2-170-180

EDN: OMYQZC

Abstract

The most common type of cardiomyopathy is hypertrophic cardiomyopathy (HCM), determined by wall thickening of the left ventricle. Most often the reason of this type of cardiomyopathy are mutations in genes encoding sarcomere proteins. However, in most cases it is not possible to establish a clear cause of the development of HCMP due to the absence of mutations of causal genes. The development of pronounced myocardial hypertrophy stimulated investigation of intracellular processes of maintaining homeostasis, in particular autophagy. Being one of the main mechanisms of protein quality control in muscle cells, at the impairment of autophagy was previously discussed in the presence of sarcomere proteins mutations. This work is focused on studying expression changes among main biochemical markers associated with the autophagy process in myocardial tissue samples obtained from patients with diagnosed HCMP. The study group of patients was divided into several subgroups to compare the results obtained depending on the mutation found. It was found that the expression of autophagy markers and mitochondrial homeostasis in patients with HCMP associated with the presence of sarcomere mutations differed from the expression of these genes relative to the comparison group. While in the samples from patients with Z-disk genes mutations, as well as in the genes encoding lysosomal enzymes, no expression changes of the studied autophagy markers were found.

About the Authors

K. S. Sukhareva
Almazov National Medical Research Centre
Russian Federation

Ksenia S. Sukhareva - PhD, Almazov National Medical Research Centre.

Akkuratova str., 2, Saint Petersburg, 197341


Competing Interests:

None



A. I. Mikhaleva
Almazov National Medical Research Centre
Russian Federation

Anna I. Mikhaleva - postgraduate, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



A. V. Gurshchenkov
Almazov National Medical Research Centre
Russian Federation

Aleksandr V. Gurshchenkov - MD, PhD, Associate Professor, Department of Cardiovascular Surgery, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



V. V. Zaitsev
Almazov National Medical Research Centre
Russian Federation

Vadim V. Zaitsev - MD, Assistant of the Department of Cardiology, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



A. A. Kozyreva
Almazov National Medical Research Centre
Russian Federation

Aleksandra A. Kozyreva - PhD, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



S. E. Andreeva
Almazov National Medical Research Centre
Russian Federation

Sofiia E. Andreeva - MD, Postgraduate Student in Cardiology, Department of Cardiology, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



L. S. Gavrilova
Almazov National Medical Research Centre
Russian Federation

Lidiia S. Gavrilova - magister, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



O. M. Moiseeva
Almazov National Medical Research Centre
Russian Federation

Olga M. Moiseeva - MD, PhD, DSc, Chief Researcher, Non-Coronary Heart Disease Research Department, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



A. A. Kostareva
Almazov National Medical Research Centre
Russian Federation

Anna A. Kostareva - MD, PhD, DSc, Director Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



V. K. Grebennik
Almazov National Medical Research Centre
Russian Federation

Vadim K. Grebennik - Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



M. L. Gordeev
Almazov National Medical Research Centre
Russian Federation

Mikhail L. Gordeev - MD, PhD, DSc, Chief Researcher research department of Сardiothoracic surgery, Almazov National Medical Research Centre.

Saint Petersburg


Competing Interests:

None



References

1. Devi S, Kim JJ, Singh AP, et al. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med. 2021;11(2):69. DOI: 10.3390/jpm11020069.

2. Schreiber A, Peter M. Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim Biophys Acta. 2014;1843(1):163–81. DOI: 10.1016/j.bbamcr.2013.03.019.

3. Castets P, Frank S, Sinnreich M, Ruegg MA. “Get the Balance Right”: Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis. 2016;3(2):127–55. DOI: 10.3233/JND-160153

4. Bonuccelli G, Sotgia F, Schubert W, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003;163(4):1663–75. DOI: 10.1016/S0002-9440(10)63523-7.

5. Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014;307(6):E469–84. DOI: 10.1152/ajpendo.00204.2014.

6. Tannous P, Zhu H, Johnstone JL, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2008;105(28):9745–9750. DOI: 10.1073/pnas.0706802105.

7. Carmignac V, Svensson M, Korner Z, et al. Autophagy is increased in laminin alpha2 chain-deficient muscle and its inhibition improves muscle morphology in a mouse model of MDC1A. Hum Mol Genet. 2011;20(24):4891–902. DOI: 10.1093/hmg/ddr427.

8. Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle. 2011;1(1):9. DOI: 10.1186/2044-5040-1-9.

9. Malicdan MC, Nishino I. Autophagy in lysosomal myopathies. Brain Pathol. 2012;22(1):82–88. DOI: 10.1111/j.1750-3639.2011.00543.x.

10. Al-Qusairi L, Prokic I, Amoasii L, et al. Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J. 2013;27(8):3384–94. DOI: 10.1096/fj.12-220947.

11. Claeys KG, Fardeau M. Myofibrillar myopathies. Handb Clin Neurol. 2013;113:1337–42. DOI: 10.1016/B978-0-444-59565-2.00005-8.

12. Fetalvero KM, Yu Y, Goetschkes M, et al. Defective autophagy and mTORC1 signaling in myotubularin null mice. Mol Cell Biol. 2013;33(1):98–110. DOI: 10.1128/MCB.01075-12.

13. Zech ATL, Singh SR, Schlossarek S, Carrier L. Autophagy in cardiomyopathies. Biochim Biophys Acta Mol Cell Res. 2020;1867(3):118432. DOI: 10.1016/j.bbamcr.2019.01.013.

14. Sandri M, Robbins J. Proteotoxicity: an underappreciated pathology in cardiac disease. J Mol Cell Cardiol. 2014;71:3–10. DOI: 10.1016/j.yjmcc.2013.12.015.

15. Verdonschot JAJ, Vanhoutte EK, Claes GRF, et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat. 2020;41(6):1091–1111. DOI: 10.1002/humu.24004.

16. Cassandrini D, Merlini L, Pilla F, et al. Protein aggregates and autophagy involvement in a family with a mutation in Z-band alternatively spliced PDZ-motif protein. Neuromuscul Disord. 2021;31(1):44–51. DOI: 10.1016/j.nmd.2020.11.008.

17. Bhuiyan MS, Pattison JS, Osinska H, et al. Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest. 2013;123(12):5284–97. DOI: 10.1172/JCI70877.

18. Pattison JS, Osinska H, Robbins J. Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ Res. 2011;109(2):151– 60. DOI: 10.1161/CIRCRESAHA.110.237339

19. Song L, Su M, Wang S, et al. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med. 2014;18(11):2266–2274. DOI: 10.1111/jcmm.12380.

20. Singh SR, Zech ATL, Geertz B, et al. Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circ Heart Fail. 2017;10(10). DOI: 10.1161/CIRCHEARTFAILURE.117.004140.

21. Iskratsch T, Lange S, Dwyer J, et al. Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. Journal of Cell Biology. 2010;191(6):1159–72. DOI: 10.1083/jcb.201005060.

22. Ruparelia AA, Oorschot V, Ramm G, Bryson-Richardson RJ. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum Mol Genet. 2016;25(11):2131–2142. DOI: 10.1093/hmg/ddw080.

23. McNamara JW, Parker BL, Voges HK, et al. Alpha kinase 3 signaling at the M-band maintains sarcomere integrity and proteostasis in striated muscle. Nature Cardiovascular Research. 2023;2(2):159–173. DOI: https://doi.org/10.1038/s44161-023-00219-9.

24. Kumar V, Kumar P, Chauhan L, et al. Novel combination of FLNC (c.5707G>A; p. Glu1903Lys) and BAG3 (c.610G>A; p.Gly204Arg) genetic variant expressing restrictive cardiomyopathy phenotype in an adolescent girl. J Genet. 2022;101:54.

25. Teixeira CA, Almeida Mdo R, Saraiva MJ. Impairment of autophagy by TTR V30M aggregates: in vivo reversal by TUDCA and curcumin. Clin Sci (Lond). 2016;130(18):1665–75. DOI: 10.1042/CS20160075.

26. Yanagisawa H, Hossain MA, Miyajima T, et al. Dysregulated DNA methylation of GLA gene was associated with dysfunction of autophagy. Mol Genet Metab. 2019;126(4):460–465. DOI: 10.1016/j.ymgme.2019.03.003.


Review

For citations:


Sukhareva K.S., Mikhaleva A.I., Gurshchenkov A.V., Zaitsev V.V., Kozyreva A.A., Andreeva S.E., Gavrilova L.S., Moiseeva O.M., Kostareva A.A., Grebennik V.K., Gordeev M.L. Gene expression associated with the autophagy process in patient’s myocardium with hypertrophic cardiomyopathy of various genetic etiology. Translational Medicine. 2024;11(2):170-180. (In Russ.) https://doi.org/10.18705/2311-4495-2024-11-2-170-180. EDN: OMYQZC

Views: 212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)