DEVELOPMENT OF THE CONCEPT OF CARDIOVASCULAR RISK FACTORS FROM THE PERSPECTIVE OF TRANSLATIONAL MEDICINE
https://doi.org/10.18705/2311-4495-2023-10-3-173-182
Abstract
High cardiovascular mortality (CVD) determines the relevance of their effective primary and secondary preventive measures, based on the principles of a clinical-epideomyological approach and the isolation of risk factors (RFs). Until now, CVD have been the leading cause of deterioration in the demographic indicators of the population of all countries. According to WHO, they account for up to 31 % of deaths and up to 59 % of deaths. Adherence to the principles of a healthy lifestyle, a reduction of the main RFs at the population level can prevent up to 80 % of the premature CVD deaths. At the same time, clinical manifestations of atherosclerosis can arise in the absence of “classic” RFs. To improve CVD prediction results the possibility of using additional criteria, the so-called “new” RFs, is being studied. They include the accumulation of final products of glycation, insulin resistance, obesity and hyperhomocysteinemia. Insulin resistance and hyperhomocysteinemia are thougth to be of the most value for their integration in “classic” RFs of atherosclerosis and atherothrombosis in the diagnosis of CVD and assessing individual prognosis.
Thus, the risk of CVD increases under the influence of a huge number of different genetic, anatomical, physiological,
biochemical, psychoemotional factors, and the identification of markers for the development of CVD is an urgent problem of modern health care.
About the Authors
L. A. SokolovaRussian Federation
Lyudmila A. Sokolova, D.M.Sc., Professor, Leader Researcher, Department of Preventive Cardiology
Akkuratova str., 2, Saint Petersburg, 197341
I. A. Gorlova
Russian Federation
Irina A. Gorlova, MD, Research Associate, Department of Preventive Cardiology
Akkuratova str., 2, Saint Petersburg, 197341
M. Yu. Omelchenko
Russian Federation
Marina Yu. Omelchenko, MD, Research Associate, Department of Preventive Cardiology
Akkuratova str., 2, Saint Petersburg, 197341
B. B. Bondarenko
Russian Federation
Boris B. Bondarenko, D.M.Sc., Chief Researcher, Department of Preventive Cardiology
Akkuratova str., 2, Saint Petersburg, 197341
References
1. World Health Organization (WHO). Cardiovascular diseases (CVDs) https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (17 May 2017).
2. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385(9963):117–171. DOI: 10.1016/S0140-6736(14)61682-2.
3. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study. Ann Intern Med. 1961 Jul; 55:33-50. DOI: 10.7326/0003-4819-55-1-33.
4. Kannel WB, McGee D, Gordon T. A general cardiovascular risk profile: the Framingham Study. Am J Cardiol. 1976 Jul; 38(1):46–51. DOI: 10.1016/0002-9149(76)90061-8.
5. Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med. 2007; 356(23):2388–2398. DOI: 10.1056/NEJMsa053935.
6. Collins M, Mason H, O’Flaherty M, et al. An economic evaluation of salt reduction policies to reduce coronary heart disease in England: a policy modeling study. Value Health. 2014; 17(5):517–524. DOI: 10.1016/j.jval.2014.03.1722.
7. Jousilahti P, Laatikainen T, Peltonen M, et al. Primary prevention and risk factor reduction in coronary heart disease mortality among working aged men and women in eastern Finland over 40 years: population based observational study. BMJ. 2016; 352:i721. DOI: 10.1136/bmj.i721.
8. Mattar A, Carlston D, Sariol G, et al. The prevalence of obesity documentation in Primary Care Electronic Medical Records. Are we acknowledging the problem? Appl Clin Inform. 2017; 8(1):67–79. DOI: 10.4338/ACI-2016-07-RA-0115.
9. Boytsov SA, Oganov RG. From preventive cardiology to non-communicable disease prevention in Russia. Russian Journal of Cardiology. 2013; (4):6–13.Бойцов С.А., Оганов Р.Г. От профилактической кардиологии к профилактике неинфекционных заболеваний в России. Российский кардиологический журнал. 2013; (4):6–13. DOI: 10.15829/1560-4071-2013-4-6-13.
10. Muromtseva GA, Kontsevaya AV, Konstantinov VO, et al. The prevalence of non-infectious diseases risk factors in Russian population in 2012-2013 years. the results of ECVD-RF 2014; 13(6): 4–11.
11. Metelskaya VA, Shalnova SA, Deev AD, et al. Analysis of atherogenic dyslipidemias prevalence among population of Russian Federation (results of the ESSE-RF Study). Profilakticheskaya Meditsina. 2016; 19(1):15–23.
12. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes mellitus. 2016; 19(2):104–112.
13. Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003; 290(7):898–904. DOI: 10.1001/jama.290.7.898.
14. Hense HW; MONICA Study. Epidemiology of arterial hypertension and implications for its prevention. 10-yeart results of the MONICA Study Augsburg. Dtsch Med Wochenschr. 2000; 125(46):1397–1402. In German Hense HW; MONICA Study. Epidemiologie der arteriellen Hypertonie und Implikationen für die Prävention. 10-Jahres-Ergebnisse der MONICA-Studie Augsburg. 125(46):1397– 1402. DOI: 10.1055/s-2000-8316.
15. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34):3227–3337. DOI: 10.1093/eurheartj/ehab484.
16. Sivapalaratnam S, Boekholdt SM, Trip MD, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart. 2010; 96(24):1985–1989. DOI: 10.1136/hrt.2010.210740.
17. Smirnova MD, Barinova IV, Fofanova TV, et al. What “new” factors should be considered when assessing cardiovascular risk? Cardiovascular Therapy and Prevention. 2018; 17(6):77–85.
18. Rodionov AV. High Blood Pressure Variability is an Additional Cardiovascular Risk Factor. Rational Pharmacotherapy in Cardiology. 2020; 16(1):94–98.
19. Boussoussou M, Boussoussou N, Merész G, et al. Atmospheric fronts as minor cardiovascular risk factors, a new approach to preventive cardiology. J Cardiol. 2020; 75(2):196–202. DOI: 10.1016/j.jjcc.2019.07.009.
20. Shlyakhto EV. Translational research as a model of progress in current medical science. Translational Medicine. 2014; (1):5–18.
21. Shlyakhto EV. Translational research as a model for the development of modern medical science and education. “Translational Medicine.” Ed. by Shlyakhto EV. 2nd edition. SPb; 2015: 3–33.
22. Titov VI, Khokhlova NV, Shiryaeva YuK, et al. Glucose, glycotoxins and protein glycation products: a role in pathogenesis. Clinical medicine. 2013; 3:15–24.
23. Monnier VM. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J Gerontol. 1990; 45(4):B105–B111. DOI: 10.1093/geronj/45.4.b105.
24. Moller DE, Flier JS. Insulin resistance--mechanisms, syndromes, and implications. N Engl J Med. 1991; 325(13):938–948. DOI: 10.1056/NEJM199109263251307.
25. Almazov VA, Blagosklonnaya YV, Shlyakhto EV, et al. Insulin resistance syndrome. Arterial hypertension. 1997; 3:7–17.
26. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237(3):E214–E223. DOI: 10.1152/ajpendo.1979.237.3.E214.
27. Sokolova LA, Ievskaia EV. Insulin resistance as risk factor of cardiovascular diseases. Translational Medicine. 2015; (6):32–38.
28. Landsberg L, Aronne LJ, Beilin LJ, et al. Obesityrelated hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society of Hypertension. J Clin Hypertens (Greenwich). 2013; 15(1):14–33. DOI: 10.1111/jch.12049.
29. Cardiovascular prevention 2017. National guidelines. Russian Journal of Cardiology. 2018; (6):7–122.
30. Wilcken DE, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest. 1976; 57(4):1079–1082. DOI: 10.1172/JCI108350.
31. Walker M, Whincup PH, Shaper AG. The British Regional Heart Study 1975–2004. Int J Epidemiol. 2004; 33(6):1185–1192. DOI: 10.1093/ije/dyh295.
32. Tapilskaya NI, Gaidukov SN. Folate deficiency elimination: basic strategy homocysteine dependent correction of endothelial dysfunction. Gynecology. 2013; 15(3):70–74.
33. Giltay EJ, Hoogeveen EK, Elbers JM, et al. Effects of sex steroids on plasma total homocysteine levels: a study in transsexual males and females. J Clin Endocrinol Metab. 1998; 83(2):550–553. DOI: 10.1210/jcem.83.2.4574.
34. Kostyuchenko GI. Hyperhomocysteinemia: clinical significance, age characteristics, diagnosis, correction. Clinical gerontology. 2007; 4:32–40.
35. Grubben MJ, Boers GH, Blom HJ, et al. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: a randomized trial. Am J Clin Nutr. 2000; 71(2):480–484. DOI: 10.1093/ajcn/71.2.480.
36. Denisova AG, Kulutsina ER, Druzhinina TA. Hyperhomocysteinemia is an independent predictor of cardiovascular complications in patients with type 2 diabetes mellitus. Medical alphabet. 2016; 19(282):54–55.
37. Dobronravov VA, Zhloba AA, Golubev RV. Hyperhomocysteinemia and cardiovascular diseases in patients on maintaining dialysis. Nephrology (Saint-Petersburg). 2003; 7(1):13–19.
38. Merki-Feld GS, Imthurn B, Keller PJ. Effects of two oral contraceptives on plasma levels of nitric oxide, homocysteine, and lipid metabolism. Metabolism. 2002; 51(9):1216–1221. DOI: 10.1053/meta.2002.34038.
39. Al Mutairi F. Hyperhomocysteinemia: Clinical Insights. J Cent Nerv Syst Dis. 2020; 12:1179573520962230. DOI: 10.1177/1179573520962230.
40. Barkagan ZS, Kostyuchenko GI, Kotovshchikov EF. Hyperhomocysteinemia as an independent risk factor for damage and thrombosis of blood vessels. Patologiya krovoobrashcheniya i kardiokhirurgiya=Circulation Pathology and Cardiac Surgery. 2002; 1: 65–71.
41. Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991; 324(17):1149–1155. DOI: 10.1056/NEJM199104253241701.
42. Baranova YI, Bolshakova OO. Clinical value of homocysteinemia (a review of literature). “Arterial’naya Gipertenziya”= Arterial Hypertension. 2004; 10(1):12–15.
43. Coppola A, Davi G, De Stefano V, et al. Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost. 2000; 26(3):243–254. DOI: 10.1055/s-2000-8469.
44. Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017; 16(1):4–15.
45. Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem. 2014; 21(32):3662–3672. DOI: 10 .2174/0929867321666140706142335.
46. Medvedev DV, Zvyagina VI. Molecular mechanisms of homocysteine’s toxic action. Russian Cardiology Bulletin. 2017; 12(1):52–57.
47. Clarke R, Bennett DA, Parish S, et al. Homocysteine and coronary heart disease: meta-analysis of MTHFR casecontrol studies, avoiding publication bias. PLoS Med. 2012; 9(2):e1001177. DOI: 10.1371/journal.pmed.1001177.
48. Blacher J, Benetos A, Kirzin JM, et al. Relation of plasma total homocysteine to cardiovascular mortality in a French population. Am J Cardiol. 2002; 90(6):591–595. DOI: 10.1016/s0002-9149(02)02561-4.
49. Vertkin AL, Topolyansky AV. The problem of hyperhomocysteinemia in cardiac patients. Pharmateka. 2007; 15(149): 10–14. In Russian Верткин А.Л., Тополянский А.В. Проблема гипергомоцистеинемии у кардио- логических больных. Фарматека. 2007; 15(149):10–14.
50. Sultanova OE, Chernysheva EN, Kokhanov AV, et al. Evolution of the trend of homocysteine research in cardiac practice. Modern problems of science and education. 2020: 4.
51. Collaboration HLT. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists’ Collaboration. BMJ. 1998; 316(7135):894–898.
52. Li Y, Huang T, Zheng Y, et al. Folic Acid Supplementation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2016; 5(8):e003768. DOI: 10.1161/JAHA.116.003768.
53. Schwingshackl L, Boeing H, Stelmach-Mardas M, et al. Dietary Supplements and Risk of Cause-Specific Death, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Primary Prevention Trials. Adv Nutr. 2017; 8(1):27–39. DOI: 10.3945/an.116.013516.
54. Yang HT, Lee M, Hong KS, et al. Efficacy of folic acid supplementation in cardiovascular disease prevention: an updated meta-analysis of randomized controlled trials. Eur J Intern Med. 2012; 23(8):745–754. DOI: 10.1016/j.ejim.2012.07.004.
Review
For citations:
Sokolova L.A., Gorlova I.A., Omelchenko M.Yu., Bondarenko B.B. DEVELOPMENT OF THE CONCEPT OF CARDIOVASCULAR RISK FACTORS FROM THE PERSPECTIVE OF TRANSLATIONAL MEDICINE. Translational Medicine. 2023;10(3):173-182. (In Russ.) https://doi.org/10.18705/2311-4495-2023-10-3-173-182