Preview

Translational Medicine

Advanced search

The role of perfusion MRi and CT technology in the hemodynamic evaluation of brain tumors

https://doi.org/10.18705/2311-4495-2015-0-4-41-47

Abstract

The review provides a detailed analysis of perfusion MSCT and MRI possibilities in the diagnosis of brain tumors. The major quantitative parameters for perfusion MRI and MSCT are described in detail with comparison of morphological criteria for angiogenesis evaluation as well as the typical pattern of perfusion disturbances and changes in brain tumors before treatment and during follow-up period.

About the Authors

Andrey A. Stanzhevskiy
Almazov Federal North-West Medical Research Centre; Russian Research Centre of Radiology and Surgical Technologies
Russian Federation


Leonid A. Tyutin
Russian Research Centre of Radiology and Surgical Technologies
Russian Federation


References

1. Долгушин М. Б., Пронин И. Н. Перфузионная компьютерная томография в оценке эффективности лучевой терапии при вторичном опухолевом поражении головного мозга. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2008;19(4):36-46.

2. Долгушин М. Б., Пронин И. Н., Фадеева Л. М. Импульсная последовательность SWAN (3,0 Тесла) и КТ-перфузия в комплексной оценке структурных особенностей метастазов в головном мозге и злокачественных глиом. Лучевая диагностика и терапия. 2012;3(3):41-50.

3. Aronen HJ, Pardo FS, Kennedy DN et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res. 2000;6:2189 -200.

4. Barajas RFJr, Chang JS, Segal MR et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253:486 -496.

5. Barajas RF, Chang JS, Sneed PK et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol. 2009;30:367-367.

6. Bhujwalla ZM, Artemov D, Natarajan K. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res. 2003;9:355-362.

7. Boone JM. Radiological interpretation 2020: Toward quantitative image assessment. Med Phys. 2007;34:4173-4179.

8. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006;27:859 -867.

9. Cha S, Johnson G, Wadghiri YZ et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med. 2003;49:848 -855.

10. Conturo TE, Akbudak E, Kotys MS et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging. 2005;22:697-703.

11. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9:528 -537.

12. Ding B, Ling HW, Chen KM et al. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773-781.

13. Eastwood JD, Provenzale JM. Cerebral blood flow, blood volume and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology. 2003:45:373-376.

14. Ellika SK, Jain R, Patel SC et al. Role of perfusion CT in glioma grading and comparison with convention MR imaging features. Am J Neuroradiol. 2007;28:1981- 1987

15. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3:65-71.

16. Hara A. K., Paden R. G., Silva A. C. et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol. 2009;193:764 -771.

17. Hoeffner EG, Case I, Jain R et al. Cerebral Perfusion CT: Technique and Clinical applications. Radiology. 2004;231:632-644.

18. Jain R. Perfusion CT imaging of brain tumors: an overview. Am J Neuroradiol. 2011;32(9):1570-1577.

19. Jain R, Gutierrez J, Narang J et al. In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. Am J Neuroradiol. 2011;32:388-394.

20. Jain R, Scarpace L, Ellika S et al. First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery. 2007;61:778 -786, discussion P. 786 -787

21. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2:266 -276

22. Johnson G, Wetzel SG, Cha S et al. Measuring blood volume and vascular transfer constant from dynamic, T (2)*-weighted contrast-enhanced MRI. Magn Reson Med. 2004;51:961-968.

23. Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol. 1966;210:1299 -1303.

24. Law M, Oh S, Johnson G et al. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery. 2006;58:1099 -1107.

25. Law M, Yang S, Babb JS et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol. 2004;25:746 -755.

26. Law M, Yang S, Wang H et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol. 2003;24:1989 -1998.

27. Law M, Young RJ, Babb JS et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490-498.

28. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003;47:171-187.

29. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362-372.

30. Lev MH, Ozsunar Y, Henson JW et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol. 2004;25:214 -221.

31. Li VW, Folkerth RD, Watanabe H et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet. 1994;344:82-86.

32. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003;76:220-231.

33. Plate KH, Breier G, Weich HA et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845-848.

34. Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol. 2005;185:763-767.

35. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol. 2001;46:3161-3175.

36. Raatschen HJ, Simon GH, Fu Y et al. Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology. 2008;247:391-399.

37. Roberts HC, Roberts TP, Brasch RC et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol. 2000;21:891-899

38. Roberts HC, Roberts TPL., Lee TY, Dillon WP. Dynamic Contrast-Enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: Report of two cases. Am J Neuroradiol. 2002;23:828-832.

39. Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843-845.

40. Sugahara T, Korogi Y, Tomiguchi S et al. The Value of Perfusion-sensitive Contrast-enhanced MR Iamging for Differentiating Tumor Recurrence from Nonneoplastic Contrast-enhancing Tissue. Am J Neuroradiol. 2000;21:901-909.

41. Uematsu H, Maeda M. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol. 2006;16:180 -186.

42. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 1995;147:9 -19.

43. Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294-314.


Review

For citations:


Stanzhevskiy A.A., Tyutin L.A. The role of perfusion MRi and CT technology in the hemodynamic evaluation of brain tumors. Translational Medicine. 2015;(4):41-47. (In Russ.) https://doi.org/10.18705/2311-4495-2015-0-4-41-47

Views: 619


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)