Preview

Трансляционная медицина

Расширенный поиск

НЕАЛКОГОЛЬНАЯ ЖИРОВАЯ БОЛЕЗНЬ ПЕЧЕНИ У ПАЦИЕНТОВ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА: ВОЗМОЖНОСТИ МЕТОДОВ ЛУЧЕВОЙ ДИАГНОСТИКИ

https://doi.org/10.18705/2311-4495-2023-10-2-146-153

Полный текст:

Аннотация

Неалкогольная жировая болезнь (НАЖБП) — это наиболее распространенное заболевание печени и одно из наиболее частых показаний к ее трансплантации в развитых странах мира. Сахарный диабет 2 типа (СД 2) является важным фактором риска развития НАЖБП. СД 2, согласно имеющимся данным, ускоряет прогрессирование НАЖБП, поэтому в этой группе больных возможности диагностической визуализации печени приобретают большее значение, чем у пациентов с НАЖБП в отсутствие СД 2. Кроме того, в клинической практике данное заболевание остается недиагностированным более чем в половине случаев, а его течение — трудно прогнозируемым.
Следует отметить, что золотым стандартом диагностики НАЖБП по-прежнему является биопсия печени, однако метод имеет ряд очевидных недостатков ввиду инвазивности, невозможности его частого выполнения в рутинной практике, неприменимости для оценки динамики НАЖБП в ходе лечения, а также относительно высокой стоимости. В связи с этим ведется поиск новых неинвазивных методов диагностики НАЖБП, особенно на ранних стадиях.
Лучевая диагностика НАЖБП основывается на использовании ультразвукового исследования (УЗИ), компьютерной томографии (КТ) и магнитно-резонансной томографии (МРТ), чувствительность и специфичность которых значительно варьируют. Таким образом, в данном обзоре обсуждаются современные методики неинвазивной инструментальной диагностики различных видов НАЖБП у пациентов с СД 2, которые потенциально могут иметь важное прогностическое значение.

Об авторах

А. Ю. Бабенко
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Бабенко Алина Юрьевна, д.м.н., профессор кафедры эндокринологии, Институт медицинского образования, заведующий НИО генетических рисков и персонифицированной профилактики, НЦМУ «Центр персонализированной медицины», главный научный сотрудник научно-исследовательской лаборатории диабетологии, Институт эндокринологии, врач-эндокринолог высшей категории

Санкт-Петербург



М. Ю. Лаевская
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Лаевская Мария Юрьевна, к.м.н., доцент кафедры эндокринологии, Институт медицинского образования, старший научный сотрудник научно-исследовательской лаборатории диабетологии, Институт эндокринологии

Санкт-Петербург



А. Р. Мелтонян
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Мелтонян Ася Робертовна, аспирант кафедры эндокринологии, врач-эндокринолог

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



Ю. Н. Савченков
Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации - Федеральный медицинский биофизический центр имени А. И. Бурназяна» Федерального медико-биологического агентства России
Россия

Савченков Юрий Николаевич, к.м.н., ассистент кафедры лучевой диагностики с курсом радиологии, Медико-биологический университет инноваций и непрерывного образования

Москва



Г. Е. Труфанов
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Труфанов Геннадий Евгеньевич, д.м.н., профессор, заведующий научно-исследовательским отделом лучевой диагностики

Санкт-Петербург



Список литературы

1. Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. DOI: 10.1016/j.diabres.2021.109119.

2. Yuan S, Chen J, Li X, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur J Epidemiol. 2022; 37(7):723–733. DOI: 10.1007/s10654-022-00868-3

3. Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022; 7(9):851–861. DOI: 10.1016/S2468-1253(22)00165-0

4. Younossi ZM. Non-alcoholic fatty liver disease — A global public health perspective. J Hepatol. 2019; 70(3):531–544. DOI: 10.1016/j.jhep.2018.10.033.

5. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment Pharmacol Ther. 2018; 48(7):696–703. DOI: 10.1111/apt.14937.

6. Targher G, Corey KE, Byrne CD, et al. The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021; 18(9):599–612. DOI: 10.1038/s41575-021-00448-y.

7. Shetty AS, Sipe AL, Zulfiqar M, et al. In-Phase and Opposed-Phase Imaging: Applications of Chemical Shift and Magnetic Susceptibility in the Chest and Abdomen. Radiographics. 2019; 39(1):115–135. DOI: 10.1148/rg.2019180043.

8. Seifeldein GS, Hassan EA, Imam HM, et al. Quantitative MDCT and MRI assessment of hepatic steatosis in genotype 4 chronic hepatitis C patients with fibrosis Egypt J Radiol Nucl Med. 2021; 52:210. DOI: 10.1186/s43055-021-00590-2.

9. Диомидова В.Н., Тарасова Л.В., Цыганова Ю.В. и др. Ультразвуковая эластография печени с технологией затухающего сигнала позволяет оценить степень стеатоза и осуществлять динамическое наблюдение эффективности лечения НАЖБП. Экспе- риментальная и клиническая гастроэнтерология. 2020; (9):45–54. DOI: 10.31146/1682-8658-ecg-181-9-45-54.

10. Ferraioli G, Soares Monteiro LB. Ultrasoundbased techniques for the diagnosis of liver steatosis. World J Gastroenterol. 2019; 25(40):6053–6062. DOI: 10.3748/wjg.v25.i40.6053.

11. Ferraioli G, Berzigotti A, Barr RG, et al. Quantification of Liver Fat Content with Ultrasound: A WFUMB Position Paper. Ultrasound Med Biol. 2021; 47(10):2803–2820. DOI: 10.1016/j.ultrasmedbio.2021.06.002.

12. Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011; 54(3):1082–1090. DOI: 10.1002/hep.24452.

13. Palmentieri B, de Sio I, La Mura V, et al. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Dig Liver Dis. 2006; 38(7):485–489. DOI: 10.1016/j.dld.2006.03.021.

14. Chan WK, Nik Mustapha NR, Mahadeva S, et al. Can the same controlled attenuation parameter cut-offs be used for M and XL probes for diagnosing hepatic steatosis? J Gastroenterol Hepatol. 2018; 33(10):1787–1794. DOI: 10.1111/jgh.14150.

15. Dasarathy S, Dasarathy J, Khiyami A, et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J Hepatol. 2009; 51(6):1061–1067. DOI: 10.1016/j.jhep.2009.09.001.

16. Lee DH. Imaging evaluation of non-alcoholic fatty liver disease: focused on quantification. Clin Mol Hepatol. 2017; 23(4):290–301. DOI: 10.3350/cmh.2017.0042.

17. Hepburn MJ, Vos JA, Fillman EP, et al. The accuracy of the report of hepatic steatosis on ultrasonography in patients infected with hepatitis C in a clinical setting: a retrospective observational study. BMC Gastroenterol. 2005; 5:14. DOI: 10.1186/1471-230X-5-14.

18. Selvaraj EA, Mózes FE, Jayaswal ANA, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J Hepatol. 2021; 75(4):770–785. DOI: 10.1016/j.jhep.2021.04.044.

19. Pu K, Wang Y, Bai S, et al. Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: a systematic review and meta-analysis. BMC Gastroenterol. 2019; 19(1):51. DOI: 10.1186/s12876-019-0961-9.

20. Karlas T, Petroff D, Sasso M, et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017; 66(5):1022–1030. DOI: 10.1016/j.jhep.2016.12.022.

21. Hsu C, Caussy C, Imajo K, et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clin Gastroenterol Hepatol. 2019; 17(4):630–637.e8. DOI: 10.1016/j.cgh.2018.05.059.

22. Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology. 2017; 66(5):1486–1501. DOI: 10.1002/hep.29302.

23. Anstee QM, Lawitz EJ, Alkhouri N, et al. Noninvasive Tests Accurately Identify Advanced Fibrosis due to NASH: Baseline Data From the STELLAR Trials. Hepatology. 2019; 70(5):1521–1530. DOI: 10.1002/hep.30842.

24. Boursier J, Guillaume M, Leroy V, et al. New sequential combinations of non-invasive fibrosis tests provide an accurate diagnosis of advanced fibrosis in NAFLD. J Hepatol. 2019; 71(2):389–396. DOI: 10.1016/j.jhep.2019.04.020.

25. Van Dijk AM, Vali Y, Mak AL, et al. Systematic Review with Meta-Analyses: Diagnostic Accuracy of FibroMeter Tests in Patients with Non-Alcoholic Fatty Liver Disease. J Clin Med. 2021; 10(13):2910. DOI: 10.3390/jcm10132910.

26. Loong TC, Wei JL, Leung JC, et al. Application of the combined FibroMeter vibration-controlled transient elastography algorithm in Chinese patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2017; 32(7):1363–1369. DOI: 10.1111/jgh.13671.

27. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Short Version). Ultraschall Med. 2017; 38(4):377–394. DOI: 10.1055/s-0043-103955.

28. Piazzolla VA, Mangia A. Noninvasive Diagnosis of NAFLD and NASH. Cells. 2020; 9(4):1005. DOI: 10.3390/cells9041005.

29. Ferraioli G, Tinelli C, Lissandrin R, et al. Ultrasound point shear wave elastography assessment of liver and spleen stiffness: effect of training on repeatability of measurements. Eur Radiol. 2014; 24(6):1283–1289. DOI: 10.1007/s00330-014-3140-y.

30. Dietrich CF, Bamber J, Berzigotti A, et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med. 2017; 38(4):e16–e47. DOI: 10.1055/s-0043-103952.

31. Jamialahmadi T, Nematy M, Jangjoo A, et al. Measurement of Liver Stiffness with 2D-Shear Wave Elastography (2D-SWE) in Bariatric Surgery Candidates Reveals Acceptable Diagnostic Yield Compared to Liver Biopsy. Obes Surg. 2019; 29(8):2585–2592. DOI: 10.1007/s11695-019-03889-2.

32. Rajamani AS, Rammohan A, Sai VVR, et al. Current techniques and future trends in the diagnosis of hepatic steatosis in liver donors: A review Journal of Liver Transplantation. 2022; 7:100091. DOI: 10.1016/j.liver.2022.100091.

33. Rastogi R, Gupta S, Garg B, et al. Comparative accuracy of CT, dual-echo MRI and MR spectroscopy for preoperative liver fat quantification in living related liver donors. Indian J Radiol Imaging. 2016; 26(1):5–14. DOI: 10.4103/0971-3026.178281.

34. Zhang Y, Wang C, Duanmu Y, et al. Comparison of CT and magnetic resonance mDIXON-Quant sequence in the diagnosis of mild hepatic steatosis. Br J Radiol. 2018; 91(1091):20170587. DOI: 10.1259/bjr.20170587.

35. Zhang PP, Choi HH, Ohliger MA. Detection of fatty liver using virtual non-contrast dual-energy CT. Abdom Radiol (NY). 2022; 47(6):2046–2056. DOI: 10.1007/s00261-022-03482-9.

36. Zhang YN, Fowler KJ, Hamilton G, et al. Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol. 2018; 91(1089):20170959. DOI: 10.1259/bjr.20170959.

37. Lamb P, Sahani DV, Fuentes-Orrego JM, et al. Stratification of patients with liver fibrosis using dualenergy CT. IEEE Trans Med Imaging. 2015; 34(3):807–815. DOI: 10.1109/TMI.2014.2353044.

38. Аллахвердиева Я.С., Воробьев С.В., Минеев Н.И. Современные возможности магнитно-резонансных технологий в диагностике ожирения печени. Медицинский вестник Северного Кавказа. 2018; 13(4):695–700. DOI: 10.14300/mnnc.2018.13140.

39. Jayakumar S, Middleton MS, Lawitz EJ, et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: Analysis of data from a phase II trial of selonsertib. J Hepatol. 2019; 70(1):133–141. DOI: 10.1016/j.jhep.2018.09.024.

40. Caussy C, Reeder SB, Sirlin CB, et al. Noninvasive, Quantitative Assessment of Liver Fat by MRI-PDFF as an Endpoint in NASH Trials. Hepatology. 2018; 68(2):763–772. DOI: 10.1002/hep.29797.

41. Gu J, Liu S, Du S, et al. Diagnostic value of MRIPDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019; 29(7):3564–3573. DOI: 10.1007/s00330-019-06072-4.

42. Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 2013; 267(2):422–431. DOI: 10.1148/radiol.12120896.

43. Bonekamp S, Tang A, Mashhood A, et al. Spatial distribution of MRI-Determined hepatic proton density fat fraction in adults with nonalcoholic fatty liver disease. J Magn Reson Imaging. 2014; 39(6):1525–1532. DOI: 10.1002/jmri.24321.

44. Yoneda M, Honda Y, Ogawa Y, et al. Comparing the effects of tofogliflozin and pioglitazone in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus (ToPiND study): a randomized prospective open-label controlled trial. BMJ Open Diabetes Res Care. 2021; 9(1):e001990. DOI: 10.1136/bmjdrc-2020-001990.

45. Doycheva I, Cui J, Nguyen P, et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment Pharmacol Ther. 2016; 43(1):83–95. DOI: 10.1111/apt.13405.

46. Simchick G, Zhao R, Hamilton G, et al. Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T. Magn Reson Med. 2022; 87(2):597–613. DOI: 10.1002/mrm.29021.

47. Шария М.А., Ширяев Г.А., Устюжанин Д.В. Протонная магнитно-резонансная спектроскопия в диагностическом алгоритме у пациента с неалкогольной жировой болезнью печени при комплексном подходе к лечению. REJR. 2014; 4(3): 91–93.

48. Yokoo T, Serai SD, Pirasteh A, et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology. 2018; 286(2):486–498. DOI: 10.1148/radiol.2017170550.

49. Roumans KHM, Lindeboom L, Veeraiah P, et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat. Commun. 2020; 11:1891. DOI: 10.1038/s41467-020-15684-0.

50. Trout AT, Serai S, Mahley AD, et al. Liver Stiffness Measurements with MR Elastography: Agreement and Repeatability across Imaging Systems, Field Strengths, and Pulse Sequences. Radiology. 2016; 281(3):793–804. DOI: 10.1148/radiol.2016160209.

51. Serai SD, Obuchowski NA, Venkatesh SK, et al. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology. 2017; 285(1):92–100. DOI: 10.1148/radiol.2017161398.

52. Fitzpatrick E, Dhawan A. Noninvasive biomarkers in non-alcoholic fatty liver disease: current status and a glimpse of the future. World J Gastroenterol. 2014; 20(31):10851–10863. DOI: 10.3748/wjg.v20.i31.10851.

53. Kim BH, Lee JM, Lee YJ, et al. MR elastography for noninvasive assessment of hepatic fibrosis: experience from a tertiary center in Asia. J Magn Reson Imaging. 2011; 34(5):1110–1116. DOI: 10.1002/jmri.22723.

54. Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroenterol. 2014; 20(23):7392–7402. DOI: 10.3748/wjg.v20.i23.7392.

55. Imajo K, Kessoku T, Honda Y, et al. Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology. 2016; 150(3):626–637.e7. DOI: 10.1053/j.gastro.2015.11.048.


Рецензия

Для цитирования:


Бабенко А.Ю., Лаевская М.Ю., Мелтонян А.Р., Савченков Ю.Н., Труфанов Г.Е. НЕАЛКОГОЛЬНАЯ ЖИРОВАЯ БОЛЕЗНЬ ПЕЧЕНИ У ПАЦИЕНТОВ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА: ВОЗМОЖНОСТИ МЕТОДОВ ЛУЧЕВОЙ ДИАГНОСТИКИ. Трансляционная медицина. 2023;10(3):146-153. https://doi.org/10.18705/2311-4495-2023-10-2-146-153

For citation:


Babenko A.Yu., Laevskaya M.Yu., Meltonian A.R., Savchenkov Yu.N., Trufanov G.E. NON-ALCOHOLIC FATTY LIVER DISEASE IN PATIENTS WITH TYPE 2 DIABETES: MODERN IMAGING MODALITIES. Translational Medicine. 2023;10(3):146-153. (In Russ.) https://doi.org/10.18705/2311-4495-2023-10-2-146-153

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)