Preview

Трансляционная медицина

Расширенный поиск

Роль перфузионных технологий в оценке гемодинамики опухолей головного мозга

https://doi.org/10.18705/2311-4495-2015-0-4-41-47

Полный текст:

Аннотация

В обзоре приведен подробный анализ литературы, посвященной изучению возможностей перфузионных многослойной спиральной компьютерной томографии (МСКТ) и магнитно-резонансной томографии (МРТ) в диагностике опухолей головного мозга. Детально описаны основные количественные показатели оценки перфузии, которые можно определять с помощью технологий лучевой визуализации. Представлено сопоставление морфологических критериев оценки ангиогенеза и перфузионных параметров, показана типичная картина перфузионных нарушений в опухолях головного мозга, в том числе на фоне проводимого лечения.

Об авторах

Андрей Алексеевич Станжевский
ФГБУ «Северо-западный федеральный медицинский исследовательский центр им. В. А. Алмазова»; ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России
Россия


Леонид Аврамович Тютин
ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России
Россия


Список литературы

1. Долгушин М. Б., Пронин И. Н. Перфузионная компьютерная томография в оценке эффективности лучевой терапии при вторичном опухолевом поражении головного мозга. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2008;19(4):36-46.

2. Долгушин М. Б., Пронин И. Н., Фадеева Л. М. Импульсная последовательность SWAN (3,0 Тесла) и КТ-перфузия в комплексной оценке структурных особенностей метастазов в головном мозге и злокачественных глиом. Лучевая диагностика и терапия. 2012;3(3):41-50.

3. Aronen HJ, Pardo FS, Kennedy DN et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res. 2000;6:2189 -200.

4. Barajas RFJr, Chang JS, Segal MR et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253:486 -496.

5. Barajas RF, Chang JS, Sneed PK et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am J Neuroradiol. 2009;30:367-367.

6. Bhujwalla ZM, Artemov D, Natarajan K. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res. 2003;9:355-362.

7. Boone JM. Radiological interpretation 2020: Toward quantitative image assessment. Med Phys. 2007;34:4173-4179.

8. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. Am J Neuroradiol. 2006;27:859 -867.

9. Cha S, Johnson G, Wadghiri YZ et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med. 2003;49:848 -855.

10. Conturo TE, Akbudak E, Kotys MS et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging. 2005;22:697-703.

11. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9:528 -537.

12. Ding B, Ling HW, Chen KM et al. Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology. 2006;48:773-781.

13. Eastwood JD, Provenzale JM. Cerebral blood flow, blood volume and vascular permeability of cerebral glioma assessed with dynamic CT perfusion imaging. Neuroradiology. 2003:45:373-376.

14. Ellika SK, Jain R, Patel SC et al. Role of perfusion CT in glioma grading and comparison with convention MR imaging features. Am J Neuroradiol. 2007;28:1981- 1987

15. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3:65-71.

16. Hara A. K., Paden R. G., Silva A. C. et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol. 2009;193:764 -771.

17. Hoeffner EG, Case I, Jain R et al. Cerebral Perfusion CT: Technique and Clinical applications. Radiology. 2004;231:632-644.

18. Jain R. Perfusion CT imaging of brain tumors: an overview. Am J Neuroradiol. 2011;32(9):1570-1577.

19. Jain R, Gutierrez J, Narang J et al. In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. Am J Neuroradiol. 2011;32:388-394.

20. Jain R, Scarpace L, Ellika S et al. First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery. 2007;61:778 -786, discussion P. 786 -787

21. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer. 2002;2:266 -276

22. Johnson G, Wetzel SG, Cha S et al. Measuring blood volume and vascular transfer constant from dynamic, T (2)*-weighted contrast-enhanced MRI. Magn Reson Med. 2004;51:961-968.

23. Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol. 1966;210:1299 -1303.

24. Law M, Oh S, Johnson G et al. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery. 2006;58:1099 -1107.

25. Law M, Yang S, Babb JS et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. Am J Neuroradiol. 2004;25:746 -755.

26. Law M, Yang S, Wang H et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol. 2003;24:1989 -1998.

27. Law M, Young RJ, Babb JS et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490-498.

28. Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003;47:171-187.

29. Leon SP, Folkerth RD, Black PM. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer. 1996;77:362-372.

30. Lev MH, Ozsunar Y, Henson JW et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. Am J Neuroradiol. 2004;25:214 -221.

31. Li VW, Folkerth RD, Watanabe H et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet. 1994;344:82-86.

32. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003;76:220-231.

33. Plate KH, Breier G, Weich HA et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992;359:845-848.

34. Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. Am J Roentgenol. 2005;185:763-767.

35. Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol. 2001;46:3161-3175.

36. Raatschen HJ, Simon GH, Fu Y et al. Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology. 2008;247:391-399.

37. Roberts HC, Roberts TP, Brasch RC et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol. 2000;21:891-899

38. Roberts HC, Roberts TPL., Lee TY, Dillon WP. Dynamic Contrast-Enhanced CT of human brain tumors: quantitative assessment of blood volume, blood flow, and microvascular permeability: Report of two cases. Am J Neuroradiol. 2002;23:828-832.

39. Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843-845.

40. Sugahara T, Korogi Y, Tomiguchi S et al. The Value of Perfusion-sensitive Contrast-enhanced MR Iamging for Differentiating Tumor Recurrence from Nonneoplastic Contrast-enhancing Tissue. Am J Neuroradiol. 2000;21:901-909.

41. Uematsu H, Maeda M. Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol. 2006;16:180 -186.

42. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol. 1995;147:9 -19.

43. Wintermark M, Sesay M, Barbier E et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32:294-314.


Для цитирования:


Станжевский А.А., Тютин Л.А. Роль перфузионных технологий в оценке гемодинамики опухолей головного мозга. Трансляционная медицина. 2015;(4):41-47. https://doi.org/10.18705/2311-4495-2015-0-4-41-47

For citation:


Stanzhevskiy A.A., Tyutin L.A. The role of perfusion MRi and CT technology in the hemodynamic evaluation of brain tumors. Translational Medicine. 2015;(4):41-47. (In Russ.) https://doi.org/10.18705/2311-4495-2015-0-4-41-47

Просмотров: 75


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)