Биомедицинское использование наноконъюгатов на основе оксида графена и фуллеренов c цитостатическими препаратами.
https://doi.org/10.18705/2311-4495-2023-10-5-402-411
EDN: IHCXOQ
Аннотация
Медицина рассматривается как одна из наиболее перспективных и важнейших областей применения современных нанотехнологий. Так, многообещающим направлением является использование наноструктур для адресной (таргетной) доставки лекарственных средств, для обеспечения пролонгированного действия лекарств, для диагностики и изготовления изделий медицинского назначения. Превосходные электрические, механические и оптические свойства углеродных наночастиц, а также простота их функционализации позволили им стать привлекательными кандидатами для создания новых материалов, в том числе и для биомедицинского применения. Как показал анализ современных литературных данных, значительное количество научных исследований, выполненных в области экспериментальной онкологии, были посвящены разработке методов направленной доставки противоопухолевых средств к биологическим мишеням, в том числе с использованием наночастиц. Таким образом, создание противоопухолевых препаратов на основе конъюгатов цитостатических препаратов с углеродными наноструктурами является одним из наиболее активно развивающихся направлений медицинской химии. В данном обзоре рассмотрены научные достижения в области получения и исследования свойств наноконъюгатов на основе оксида графена и фуллеренов с цитостатическими препаратами (такими как: паклитаксел, карбоплатин, цисплатин, доксорубицин, гемцитабин и др.), механизмы их действия и области практического применения углеродных наноструктур в биомедицине. Отдельное внимание уделено требованиям, предъявляемым к наноносителям, способам адресной доставки наноконъюгатов к биологическим мишеням, преимуществам применения противоопухолевых средств в составе наноконъюгатов на основе углеродных наноструктур. Кроме того, в обзоре обобщены и обозначены имеющиеся в настоящий момент проблемы применения углеродных наноструктур в биомедицине.
Ключевые слова
Об авторах
А. В. ПротасРоссия
Е. А. Попова
О. В. Миколайчук
ул. Льва Толстого, д. 6–8, Санкт-Петербург, 197022
К. Н. Семенов
В. В. Шаройко
О. Е. Молчанов
Д. Н. Майстренко
Список литературы
1. Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. 2017; 263(3). DOI: 10.1088/1757-899X/263/3/032019.
2. Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007; 2(3):14–21. DOI: 10.1016/S1748-0132(07)70083-X.
3. Debnath SK, Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Front Nanotechnol. 2021;3:15. DOI: 10.3389/fnano.2021.644564.
4. Шляхто Е.В. Нанотехнологии в биологии и медицине. СПб: Санкт-Петербург, 2009. С. 320.
5. Singh SK, Singh MK, Kulkarni PP, et al. Aminemodified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012;6(3):2731–40. DOI: 10.1021/nn300172t.
6. Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. 2016;116 (9):5464–5519. DOI: 10.1021/acs.chemrev.5b00620.
7. Gaponenko IN, Ageev S V., Iurev GO, et al. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C60[C(COOH)2]3. Toxicol Vitr. 2020; 62:104683. DOI: 10.1016/j.tiv.2019.104683.
8. Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129–41. PMID: 17722542; PMCID: PMC2673971.
9. Zhao H, Ding R, Zhao X, et al. Graphenebased nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today. 2017;22(9):1302–17. DOI: 10.1016/j.drudis.2017.04.002.
10. Gackowski M, Koba M, Pluskota R, et al. Pharmacological classification of anticancer drugs applying chromatographic retention data and chemometric analysis. Chem Pap. 2021;75(1):265–78. DOI: 10.1007/s11696-02001301-3.
11. Rixe O, Fojo T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin Cancer Res. 2007;13(24):7280–7287. DOI: 10.1158/1078-0432. CCR-07-2141
12. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clinical Cancer Research. Clin Cancer Res; 2007;13(24):7271–9. DOI: 10.1158/1078-0432.CCR-07-1595
13. Di Maio M, Gallo C, Leighl NB, et al. Symptomatic toxicities experienced during anticancer treatment: Agreement between patient and physician reporting in three randomized trials. J Clin Oncol. 2015;33(8):910–5. DOI: 10.1200/JCO.2014.57.9334.
14. Scharf O, Colevas AD. Adverse Event Reporting in Publications Compared With Sponsor Database for Cancer Clinical Trials. J Clin Oncol. 2006; 24(24):3933–8. DOI: 10.1200/JCO.2005.05.3959.
15. Pearce A, Haas M, Viney R, et al. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. 2017; 12(10):e0184360. DOI: 10.1371/journal.pone.0184360.
16. Yan Y, Ding H. Ph-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials. 2020;10(8):1613. DOI: 10.3390/nano10081613.
17. Омельченко А.И. Биофункциональные наночастицы в лазерной медицине. Вестник ЮГУ. 2011;2(21):40–50.
18. Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci. 2020; 21(17):6280. DOI: 10.3390/ijms21176280.
19. Бабаев А.А., Зобов М.Е., Корнилов Д.Ю. и др. Оптические и электрические свойства оксида графена. Оптика и спектроскопия. 2018; 215(6):4–8.
20. Feng L-L, Wu Y-X, Zhang D-L, et al. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells. Anal Chem. 2017;89(7):4077–84. DOI:10.1021/acs.analchem.6b04943.
21. Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem. 2009;19(38):7098– 105. DOI:10.1039/B908220D.
22. Pei X, Zhu Z, Gan Z, et al. PEGylated nanographene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep. 2020;10(1):1–15. DOI: 10.1038/s41598-020-59624-w.
23. Abdelhalim AOE, Semenov KN, Nerukh DA, et al. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties. J Mol Liq. 2022;348:118368. DOI:10.1016/j.molliq.2021.118368.
24. Nanda SS, Papaefthymiou GC, Yi DK. Functionalization of Graphene Oxide and its Biomedical Applications. Crit Rev Solid State Mater Sci. 2015; 40(5):291–315. DOI: 10.1080/10408436.2014.1002604.
25. Feng L, Wu L, Qu X. New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide. Adv Mater. 2013;25(2):168–86. DOI: 10.1002/adma.201203229.
26. Sharoyko VV, Mikolaichuk OV, Shemchuk OS, et al. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5-triazine class. J Mol Liq. 2023; 372:121203. DOI: 10.1016/j.molliq.2023.121203.
27. Servant A, Bianco A, Prato M, Kostarelos K. Graphene for multi-functional synthetic biology: The last ‘zeitgeist’ in nanomedicine. Bioorg Med Chem Lett. 2014; 24(7):1638–49. DOI: 10.1016/j.bmcl.2014.01.051.
28. Rahimi S, Chen Y, Zareian M, et al. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev. 2022; 189:114467. DOI: 10.1016/j.addr.2022.114467.
29. Mousavi SM, Low FW, Hashemi SA, et al. Development of graphene based nanocomposites towards medical and biological applications. Artif Cells, Nanomedicine, Biotechnol. 2020;48(1):1189–205. DOI: 10.1080/21691401.2020.1817052.
30. Kesavan S, Meena K., Sharmili SA, et al. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery. J Drug Deliv Sci Technol. 2021;65:102760. DOI: 10.1016/j. jddst.2021.102760.
31. Поройский С.В., Носаева Т.А., Коняева Н.В. Использование графена и наноматериалов на его основе в медицине. 2014;3:9–10.
32. Zhou T, Zhang B, Wei P, et al. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials. 2014;35(37):9833–43. DOI: 10.1016/j.biomaterials.2014.08.033.
33. Wang H, Gu W, Xiao N, et al. Chlorotoxinconjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomedicine. 2014;9(1):1433–42. DOI: 10.2147/IJN.S58783.
34. Zhang L, Xia J, Zhao Q, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6(4):537– 44. DOI: 10.1002/smll.200901680.
35. Motlagh N, Parvin P, Refahizadeh M, Bavali A. Fluorescence properties of doxorubicin coupled carbon nanocarriers. Appl Opt. 2017;56:7498. DOI: 10.1364/AO.56.007498.
36. Yan J, Song B, Hu W, et al. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells. Cancer Biother Radiopharm. 2018;33(4):125–30. DOI: 10.1089/cbr.2017.2348.
37. Bullo S, Buskaran K, Baby R, et al. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm Res. 2019;36(6):91. DOI: 10.1007/s11095-0192621-8.
38. Rosli NF, Fojtů M, Fisher AC, Pumera M. Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. Langmuir. 2019; 35(8):3176–82. DOI: 10.1021/acs.langmuir.8b03086.
39. Zhuang W, He L, Wang K, et al. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells. ACS Omega. 2018; 3(2):2396–405. DOI: 10.1021/acsomega.7b02022.
40. Wei L, Li G, Lu T, et al. Functionalized Graphene Oxide as Drug Delivery Systems for Platinum Anticancer Drugs. J Pharm Sci. 2021;110(11):3631–8. DOI: 10.1016/j.xphs.2021.07.009.
41. Singh G, Nenavathu BP, Imtiyaz K, Moshahid A Rizvi M. Fabrication of chlorambucil loaded grapheneoxide nanocarrier and its application for improved antitumor activity. Biomed Pharmacother. 2020;129:110443. DOI: j.biopha.2020.110443.
42. Wei X, Li P, Zhou H, et al. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy. J Photochem Photobiol B Biol. 2021;216:112125. DOI: j.biopha.2020.110443.
43. Zhang Y, Li B, Li Z, et al. Synthesis and characterization of Tamoxifen citrate modified reduced graphene oxide nano sheets for breast cancer therapy. J Photochem Photobiol B Biol. 2018;180:68–71. DOI: 10.1016/j.jphotobiol.2017.12.017.
44. Trusek A, Kijak E, Granicka L. Graphene oxide as a potential drug carrier — Chemical carrier activation, drug attachment and its enzymatic controlled release. Mater Sci Eng C. 2020;116:111240. DOI: 10.1016/j.msec.2020.111240.
45. Tiwari H, Karki N, Pal M, et al. Functionalized graphene oxide as a nanocarrier for dual drug delivery applications: The synergistic effect of quercetin and gefitinib against ovarian cancer cells. Colloids Surfaces B Biointerfaces. 2019;178:452–9. DOI: 10.1016/j.colsurfb.2019.03.037.
46. Lin H-M, Lin H-Y, Chan M-H. Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J Mater Chem B. 2013;1(44):6147. DOI: 10.1039/ C3TB20867B.
47. Vinothini K, Rajendran NK, Ramu A, et al. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother. 2019;110:906– 17. DOI: 10.1016/j.biopha.2018.12.008.
48. Loftus C, Saeed M, Davis DM, Dunlop IE. Activation of Human Natural Killer Cells by Graphene Oxide-Templated Antibody Nanoclusters. Nano Lett. 2018;18(5):3282–9. DOI: 10.1021/acs.nanolett.8b01089.
49. Sachdeva H, Raj Khandelwal A, Meena R, et al. Graphene-based nanomaterials for cancer therapy. Mater Today Proc. 2021;43:2954–7. DOI: 10.1016/j.matpr.2021.01.314.
50. Chavva SR, Pramanik A, Nellore BPV, et al. Theranostic Graphene Oxide for Prostate Cancer Detection and Treatment. Part Part Syst Charact. 2014;31(12):1252–9. DOI: 10.1002/ppsc.201400143.
51. Xiao H, Jensen PE, Chen X. Elimination of Osteosarcoma by Necroptosis with Graphene OxideAssociated Anti-HER2 Antibodies. Int J Mol Sci. 2019;20(18):4360. DOI: 10.3390/ijms20184360.
52. Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today. 2019; 24(3):898–905. DOI: 10.1016/j.drudis.2019.01.013.
53. Giannopoulos GI. Fullerene Derivatives for Drug Delivery against COVID-19: A Molecular Dynamics Investigation of Dendro[60]fullerene as Nanocarrier of Molnupiravir. Nanomater. 2022;12(15):2711. DOI: 10.3390/nano12152711.
54. Zakharian TY, Seryshev A, Sitharaman B, et al. A Fullerene−Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J Am Chem Soc. 2005;127(36):12508–9. DOI: 10.1021/ja0546525.
55. Prylutskyy YI, Evstigneev MP, Pashkova IS, et al. Characterization of C60 fullerene complexation with antibiotic doxorubicin. Phys Chem Chem Phys. 2014;16(42):23164–72. DOI:10.1039/C4CP03367A.
56. Butowska K, Kozak W, Zdrowowicz M, et al. Cytotoxicity of doxorubicin conjugated with C60 fullerene. Structural and in vitro studies. Struct Chem. 2019;30:2327–2338. DOI:10.1007/s11224-019-01428-4.
57. Prylutska S, Grynyuk I, Skaterna T, et al. Toxicity of C60 fullerene–cisplatin nanocomplex against Lewis lung carcinoma cells. Arch Toxicol. 2019;93:1213–1226. DOI: 10.1007/s00204-019-02441-6.
58. Shi J, Zhang H, Wang L, et al. PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 2013;34(1):251–61. DOI: 10.1016/j.biomaterials.2012.09.039.
59. Joshi M, Kumar P, Kumar R, et al. Aminated carbon-based “cargo vehicles” for improved delivery of methotrexate to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2017;75:1376–1388. DOI: 10.1016/j.msec.2017.03.057.
Рецензия
Для цитирования:
Протас А.В., Попова Е.А., Миколайчук О.В., Семенов К.Н., Шаройко В.В., Молчанов О.Е., Майстренко Д.Н. Биомедицинское использование наноконъюгатов на основе оксида графена и фуллеренов c цитостатическими препаратами. Трансляционная медицина. 2023;10(5):402-411. https://doi.org/10.18705/2311-4495-2023-10-5-402-411. EDN: IHCXOQ
For citation:
Protas A.V., Popova E.A., Mikolaichuk O.V., Semenov K.N., Sharoyko V.V., Molchanov O.E., Maistrenko D.N. Biomedical use of nanoconjugates based on graphene oxide and fullerenes with cytostatic drugs. Translational Medicine. 2023;10(5):402-411. (In Russ.) https://doi.org/10.18705/2311-4495-2023-10-5-402-411. EDN: IHCXOQ