Preview

Трансляционная медицина

Расширенный поиск

Взаимосвязь рака предстательной железы с мутациями в генах-онкосупрессорах

https://doi.org/10.18705/2311-4495-2023-10-4-322-331

Аннотация

Генетическое тестирование с каждым годом играет все большую роль в диагностике различных заболеваний. Особое внимание уделяется генам, мутации в которых ассоциированы с повышенным риском развития онкологических заболеваний. Семейные формы рака предстательной железы (РПЖ) характеризуются повышенной агрессивностью течения заболевания и наиболее часто ассоциированы с мутациями в генах репарации ДНК. Известно, что носители мутаций этих генов имеют более агрессивное течение РПЖ с повышенным риском метастазирования и меньшей продолжительностью жизни. Наиболее часто в клинической практике применяется исследование мутаций в генах BRCA1/BRCA2, в то время как существует множество других генов, отвечающих за процессы репарации ДНК, которые изучены недостаточно. В данной работе выполнен обзор литературных источников, изучающих клеточные механизмы функционирования генов репарации ДНК, влияние мутаций в них на течение рака предстательной железы и на онкологические исходы.

Об авторах

М. С. Мосоян
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Мосоян Михаил Семенович, д.м.н., профессор, заведующий кафедрой урологии с курсом роботической хирургии и клиникой, лечебный факультет, Институт медицинского образования

Санкт-Петербург



О. В. Калинина
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Калинина Ольга Викторовна, д.б.н., декан факультета биомедицинских наук, Институт медицинского образования

Санкт-Петербург



Т. В. Вавилова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Вавилова Татьяна Владимировна, д.м.н., профессор, заведующая кафедрой лабораторной медицины и генетики, лечебный факультет, Институт медицинского образования

Санкт-Петербург



Н. А. Айсина
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Айсина Надежда Анатольевна, ассистент, кафедра урологии с курсом роботической хирургии и клиникой

Санкт-Петербург



В. А. Макеев
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Макеев Владимир Александрович, ординатор, кафедра урологии с курсом роботической хирургии с клиникой

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



А. А. Борисов
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Борисов Анатолий Анатольевич, ординатор, кафедра лабораторной медицины и генетики

Санкт-Петербург



Список литературы

1. Маилян О.А., Калпинский А.С., Решетов И.В. и др. Определение распространенности мутаций в генах репарации ДНК в российской популяции у больных метастатическим кастрационно-резистентным раком предстательной железы. Онкоурология 2022;18(3):60–6]. DOI: 10.17650/1726-97762022-18-3-60-66.

2. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М.: МНИОИ им. П. А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.].

3. Налетов А.А., Недбайло С.А., Кудратова Е.А. и др. Применение апалутамида для лечения рака предстательной железы. Университетская медицина Урала. 2022. Том: 8 Номер: 2 (29). Страницы: 78–83. eLIBRARY ID: 49343196].

4. Leith A, Ribbands A, Kim J, et al. Real-world homologous recombination repair mutation testing in metastatic castration-resistant prostate cancer in the USA, Europe and Japan. Future Oncol. 2022; 18: 937–951. DOI:10.2217/fon-2021-1113.

5. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004; 95(11):866–871. DOI: 10.1111/j.1349-7006.2004.tb02195.x

6. Samstein RM, Krishna C, Ma X, et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat Cancer. 2021; 1(12):1188–1203. DOI: 10.1038/s43018-020-00139-8.

7. Turnbull C, Sud A, Houlston RS. Cancer genetics, precision prevention and a call to action. Nat Genet. 2018; 50(9):1212–1218. DOI: 10.1038/s41588-018-0202-0.

8. Логинова М.В., Павлов В.Н., Гилязова И.Р. Прогностическое значение мутаций в генах BRCA1 и BRCA2 при раке предстательной железы (обзор литературы). Креативная хирургия и онкология. 2021;11(2):183–187]. https://doi.org/10.24060/2076-30932021-11-2-183-187.

9. Cheng HH, Sokolova AO, Schaeffer EM, et al. Germline and Somatic Mutations in Prostate Cancer for the Clinician. J Natl Compr Canc Netw. 2019; 17(5):515–521. DOI: 10.6004/jnccn.2019.7307.

10. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016; 375(5):443–453. DOI: 10.1056/NEJMoa1603144.

11. Стукань А.И., Горяинова А.Ю., Григорян М.М. и др. Сигнальный механизм рецептора андрогена при раке предстательной железы: резистентность к антиандрогенной терапии и связь с генами репарации повреждений ДНК. Онкоурология 2023;19(1):85–101]. DOI: 10.17650/17269776-2023-19-1-85-101.

12. Mai PL, Chatterjee N, Hartge P, et al. Potential excess mortality in BRCA1/2 mutation carriers beyond breast, ovarian, prostate, and pancreatic cancers, and melanoma. PLoS One. 2009; 4(3):e4812. DOI: 10.1371/journal.pone.0004812.

13. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011; 12(1):68–78. DOI: 10.1038/nrc3181.

14. Lin D, Izadpanah R, Braun SE, et al. A novel model to characterize structure and function of BRCA1. Cell Biol Int. 2018; 42(1):34–44. DOI: 10.1002/cbin.10846.

15. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011 Dec 23;12(1):68–78. DOI: 10.1038/nrc3181.

16. Castro E, Goh C, Leongamornlert D, et al. Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. Eur Urol. 2015; 68(2):186–193. DOI: 10.1016/j.eururo.2014.10.022.

17. Song WH, Kim SH, Joung JY, et al. Prostate Cancer in a Patient with a Family History of BRCA Mutation: a Case Report and Literature Review. J Korean Med Sci. 2017; 32(2):377–381. DOI: 10.3346/jkms.2017.32.2.377.

18. Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013; 31(14):1748–1757. DOI: 10.1200/JCO.2012.43.1882.

19. Segal N, Ber Y, Benjaminov O, et al. Imaging-based prostate cancer screening among BRCA mutation carriersresults from the first round of screening. Ann Oncol. 2020; 31(11):1545–1552. DOI: 10.1016/j.annonc.2020.06.025.

20. Ishiyama Y, Shimbo M, Iizuka J, et al. Association between prostate cancer characteristics and BRCA1/2associated family cancer history in a Japanese cohort. PLoS One. 2020; 15(12):e0244149. DOI: 10.1371/journal.pone.0244149.

21. Ibrahim M, Yadav S, Ogunleye F, et al. Male BRCA mutation carriers: clinical characteristics and cancer spectrum. BMC Cancer. 2018; 18(1):179. DOI: 10.1186/s12885-018-4098-y.

22. Abida W, Patnaik A, Campbell D, et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J Clin Oncol. 2020; 38(32):3763–3772. DOI: 10.1200/JCO.20.01035.

23. Mersch J, Jackson MA, Park M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015; 121(2):269–75. DOI: 10.1002/cncr.29041.

24. Pellini F, Granuzzo E, Urbani S, et al. Male Breast Cancer: Surgical and Genetic Features and a Multidisciplinary Management Strategy. Breast Care (Basel). 2020; 15(1):14–20. DOI: 10.1159/000501711.

25. Gallagher DJ, Gaudet MM, Pal P, et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res. 2010; 16(7):2115–2121. DOI: 10.1158/1078-0432.CCR-09-2871.

26. Mateo J, Boysen G, Barbieri CE, et al. DNA Repair in Prostate Cancer: Biology and Clinical Implications. Eur Urol. 2017; 71(3):417–425. DOI: 10.1016/j.eururo.2016.08.037.

27. Stolarova L, Kleiblova P, Janatova M, et al. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells. 2020; 9(12):2675. DOI: 10.3390/cells9122675.

28. Zhen JT, Syed J, Nguyen KA, et al. Genetic testing for hereditary prostate cancer: Current status and limitations. Cancer. 2018; 124(15):3105–3117. DOI: 10.1002/cncr.31316.

29. Dong X, Wang L, Taniguchi K, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003; 72(2):270–280. DOI: 10.1086/346094.

30. Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком предстательной железы. Онкоурология 2018;14(4):53–67].

31. Wu S, Zhou J, Zhang K, et al. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol. 2020; 10:301. DOI: 10.3389/fonc.2020.00301.

32. Голотюк М.А., Бережной А.А., Казанцева Н.В. и др. Герминальные мутации в генах PALB2 и CHEK2 и наследственный рак. Уральский медицинский журнал. 2023;22(3):126−136]. http://doi.org/10.52420/2071-5943-2023-22-3-126-136

33. Nicolosi P, Ledet E, Yang S, et al. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019;5(4):523−528. https://doi.org/10.1001/jamaoncol.2018.6760

34. Dillon KM, Bekele RT, Sztupinszki Z, et al. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol. 2022;6(1):49. https://doi.org/10.1038/s41698-022-00291-7.

35. Norris JD, Chang C-Y, Wittmann BM, et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Molec Cell. 2009;36(3):405−16. https://doi.org/10.1016/j.molcel.2009.10.020

36. Шашкин М.Н., Головко Д.А. Обзор универсальных и специфичных мутаций высокопенетрантных генов, ассоциированных с опухолями предстательной железы// Вестник науки. 2022. №6 (51)].

37. Рева С.А., Кудинова Н.И., Лапин С.В., Петров С.Б. Генетическое исследование как метод оценки предрасположенности к развитию рака предстательной железы. Вестник урологии. 2020;8(3):103−110]. https://doi.org/10.21886/2308-6424-2020-8-3-103-110

38. Park CK, Shin SJ, Cho YA, et al. HoxB13 expression in ductal type adenocarcinoma of prostate: clinicopathologic characteristics and its utility as potential diagnostic marker. Sci Rep. 2019;9(1):20205. https://doi.org/10.1038/s41598-019-56657-8.

39. Ueno S, Sudo T, Hirasawa A. ATM: Functions of ATM Kinase and Its Relevance to Hereditary Tumors. Int J Mol Sci. 2022; 23(1):523. DOI: 10.3390/ijms23010523.

40. Neeb A, Herranz N, Arce-Gallego S, et al. Advanced Prostate Cancer with ATM Loss: PARP and ATR Inhibitors. Eur Urol. 2021; 79(2):200−211. DOI: 10.1016/j.eururo.2020.10.029.

41. Zolotyh MA, Bilyalov AI, Nesterova AI, et al. Rak molochnoj zhelezy: genetika personal’nogo riska. Klinicheskaya onkologiya. 2023; 25(2): 190−198. In Russian [Золотых М.А., Билялов А.И., Нестерова А.И. и др. Рак молочной железы: генетика персонального риска. Клиническая онкология. 2023; 25(2): 190−198]. https://doi.org/10.26442/18151434.2023.2.202110

42. Kote-Jarai Z, Jugurnauth S, Mulholland S, et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer 100, 426–430 (2009). https://doi.org/10.1038/sj.bjc.6604847

43. Isaacsson Velho P, Qazi F, Hassan S, et al. Efficacy of Radium-223 in Bone-metastatic Castrationresistant Prostate Cancer with and Without Homologous Repair Gene Defects. Eur Urol. 2019; 76(2):170−176. DOI: 10.1016/j.eururo.2018.09.040.

44. Sutera P, Deek MP, Van der Eecken K, et al. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate. 2022; 82 Suppl 1(Suppl 1):S73− S85. DOI: 10.1002/pros.24373.

45. Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161(5):1215−1228. DOI: 10.1016/j.cell.2015.05.001.

46. Cohen SA, Pritchard CC, Jarvik GP. Lynch Syndrome: From Screening to Diagnosis to Treatment in the Era of Modern Molecular Oncology. Annu Rev Genomics Hum Genet. 2019; 20:293−307. DOI: 10.1146/annurev-genom-083118-015406.

47. Mitra AV, Bancroft EK, Barbachano Y, et al. Targeted prostate cancer screening in men with mutations in BRCA1 and BRCA2 detects aggressive prostate cancer: preliminary analysis of the results of the IMPACT study. BJU Int. 2011; 107(1):28−39. DOI: 10.1111/j.1464410X.2010.09648.x.

48. Sokolova AO, Cheng HH. Genetic Testing in Prostate Cancer. Curr Oncol Rep. 2020; 22(1):5. DOI: 10.1007/s11912-020-0863-6.

49. European Association of Urology. Guidelines 2020. In Russian [Европейская ассоциация урологов. Клинические рекомендации Европейской ассоциации урологов 2020].

50. Loeb S, Carter HB, Catalona WJ, et al. Baseline prostate-specific antigen testing at a young age. Eur Urol. 2012; 61(1):1−7. DOI: 10.1016/j.eururo.2011.07.067.

51. Bancroft EK, Page EC, Castro E, et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur Urol. 2014; 66(3):489−499. DOI: 10.1016/j.eururo.2014.01.003.

52. Tang P, Sun L, Uhlman MA, et al. Initial prostate specific antigen 1.5 ng/ml or greater in men 50 years old or younger predicts higher prostate cancer risk. J Urol. 2010; 183(3):946−950. DOI: 10.1016/j.juro.2009.11.021.

53. Vickers AJ, Ulmert D, Sjoberg DD, et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40−55 and long term risk of metastasis: case-control study. BMJ. 2013; 346:f2023. DOI: 10.1136/bmj.f2023.

54. Wyatt AW, Annala M, Aggarwal R, et al. Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. J Natl Cancer Inst. 2017; 109(12):djx118. DOI: 10.1093/jnci/djx118.

55. Sigorski D, Iżycka-Świeszewska E, Bodnar L. Poly(ADP-Ribose) Polymerase Inhibitors in Prostate Cancer: Molecular Mechanisms, and Preclinical and Clinical Data. Target Oncol. 2020; 15(6):709−722. DOI: 10.1007/s11523-020-00756-4.

56. Bishoff JT, Freedland SJ, Gerber L, et al. Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol. 2014; 192(2):409−414. DOI: 10.1016/j.juro.2014.02.003.

57. Klein EA, Yousefi K, Haddad Z, et al. A genomic classifier improves prediction of metastatic disease within 5 years after surgery in node-negative high-risk prostate cancer patients managed by radical prostatectomy without adjuvant therapy. Eur Urol. 2015; 67(4):778−786. DOI: 10.1016/j.eururo.2014.10.036.

58. Benjamin H, Tashzna J, Olamide O, et al. Association Between a 22-feature Genomic Classifier and Biopsy Gleason Upgrade During Active Surveillance for Prostate Cancer. Eur Urol Open Sci. 2022 Feb 11; 37:113−119. DOI: 10.1016/j.euros.2022.01.008.

59. Geybels MS, Wright JL, Bibikova M, et al. Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenetics. 2016; 8:97. DOI: 10.1186/s13148-016-0260-z.

60. Covas Moschovas M, Chew C, Bhat S, et al. Association Between Oncotype DX Genomic Prostate Score and Adverse Tumor Pathology After Radical Prostatectomy. Eur Urol Focus. 2022; 8(2):418−424. DOI: 10.1016/j.euf.2021.03.015.


Рецензия

Для цитирования:


Мосоян М.С., Калинина О.В., Вавилова Т.В., Айсина Н.А., Макеев В.А., Борисов А.А. Взаимосвязь рака предстательной железы с мутациями в генах-онкосупрессорах. Трансляционная медицина. 2023;10(4):322-331. https://doi.org/10.18705/2311-4495-2023-10-4-322-331

For citation:


Mosoyan M.S., Kalinina О.V., Vavilova T.V., Aysina N.A., Makeev A.V., Borisov A.A. The relationship of prostate cancer with mutations in tumour suppressor genes. Translational Medicine. 2023;10(4):322-331. (In Russ.) https://doi.org/10.18705/2311-4495-2023-10-4-322-331

Просмотров: 306


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)