Preview

Translational Medicine

Advanced search

Depression: magnetic resonance spectroscopy studies (review)

https://doi.org/10.18705/2311-4495-2022-9-4-20-32

Abstract

Magnetic resonance spectroscopy (MRS) is a non-invasive method for assessing the neurochemical state of the brain. In recent years, the growth in the number of high-field scanners has led to a rapid increase in such studies and improvement in the quality of MRS data, the development of mechanisms and technologies for obtaining and processing results.
The review is devoted to the study of the possibilities of MRS in the study of brain neurochemistry in depression. The fundamentals of techniques and various approaches to MRS, technical requirements for the study material, advantages and disadvantages of the method, difficulties in interpreting the results, and prospects for combining MRS with fMRI and EEG are considered. Most spectroscopic studies performed in depression show an abnormal decrease in the concentrations of the amino acid neurotransmitters γ-aminobutyric acid and glutamate, which is consistent with the results of post-mortem histopathological studies. Multivariate studies are needed to determine the anatomical and clinical specificity of changes in Glx and GABA levels that are found in depressed patients.
The presented material can be used and form the basis for further multimodal experiments using MRS, which may be relevant both for the informed development of more effective drugs, and last but not least, neurofeedback tools aimed at interactive interventions in the neural network organization in depressive disorders.

About the Authors

A. M. Korostyshevskaya
International tomography center, Siberian Branch of Russian Academy of Sciences
Russian Federation

Aleksandra M. Korostyshevskaya,  M.D., Leading Researcher, Head of the Department of Medical Diagnostics

Institutskaya str. 3А, Novosibirsk, 630090 



A. A. Savelov
International tomography center, Siberian Branch of Russian Academy of Sciences
Russian Federation

Andrey A. Savelov, Ph.D., Senior Researcher 

Novosibirsk



V. D. Abramova
International tomography center, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Victoria D. Abramova, research laboratory assistant; PhD student, Faculty of Natural Sciences

Novosibirsk



M. B. Shtark
Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Mark B. Shtark, D.Sc., Professor, academician of the Russian Academy of Sciences 

Novosibirsk



References

1. Taylor M, Bhagwagar Z, Cowen PJ et al. GABA and mood disorders. Psychol Med. 2003; 33(3):387-393. DOI: 10.1017/s0033291702006876

2. Sanacora G, Zarate CA, Krystal JH et al. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008; 7(5):426-437. DOI: 10.1038/nrd2462

3. Sanacora G. Cortical inhibition, gammaaminobutyric acid, and major depression: there is plenty of smoke but is there fire? Biol Psychiatry. 2010; 67(5):397- 398. DOI: 10.1016/j.biopsych.2010.01.003

4. Yüksel C, Öngür D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010; 68(9):785-794. DOI: 10.1016/j.biopsych.2010.06.016

5. Sanacora G, Mason GF, Rothman DL et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999; 56(11):1043-1047. DOI: 10.1001/archpsyc.56.11.1043

6. Hasler G, van der Veen JW, Tumonis T et al. Reduced prefrontal glutamate/glutamine and gammaaminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 2007; 64(2):193-200. DOI: 10.1001/archpsyc.64.2.193

7. Semenova NA, Menshchikov PE, Manzhurtsev AV, et al. Dynamics of intravital concentration of amino acid metabolites in human brain in post-traumatic period. Proceedings of the Academy of Sciences. 2019; 484(2):238– 242. In Russian [Семенова Н.А., Меньщиков П.Е., Манжурцев А.В. и др. Динамика прижизненной концентрации метаболитов аминокислот в головном мозге человека в посттравматическом периоде. Доклады Академии наук. 2019; 484(2):238–242]. DOI: 10.31857/S0869-56524842238-242

8. Perfilova VN, Borodkina LE. Participation of gamma-amino-butyric-ergic system in the regulation of cerebral blood flow. Bulletin of the russian military medical academy. 2014; 1(45):203-211. In Russian [Перфилова В.Н., Бородкина Л.Е. Участие гамма-аминомаслянокислотно-ергической системы в регуляции мозгового кровообращения. Вестник Российской Военно-медицинской академии. 2014; 1(45):203-211].

9. Semenova NA, Manzhurtsev AV, Menshchikov PE et al. Magnetic resonance spectroscopy: non-invasive studies of human brain metabolism in normal and pathological conditions. Progress in physiological science. 2019; 50(1):58–74. In Russian [Семенова Н.А., Манжурцев А.В., Меньщиков П.Е. и др. Магнитно-резонансная спектроскопия: неинвазивные исследования метаболизма мозга человека в норме и патологии. Успехи физиологических наук. 2019; 50(1):58–74]. DOI: 10.1134/S0301179819010107

10. Menshchikov PE, Semenova NA, Akhadov TA et al. An increase in cerebral γ-amino butyric acid concentration in children with mild traumatic brain injury in the acute phase: 1h mrs study. Biophysics 2017;62(6):1221–1231. In Russian [Меньщиков П.Е., Семенова Н.А., Ахадов Т.А. и др.. Рост церебральной концентрации γ-аминомасляной кислоты у детей с легкой черепно-мозговой травмой в остром периоде по данным протонной магнитно-резонансной спектроскопии. Биофизика. 2017;62(6):1221–1231].

11. Near J, Andersson J, Maron E et al. Unedited in vivo detection and quantification of γ-aminobutyric acid in the occipital cortex using short-TE MRS at 3 T. NMR Biomed. 2013; 26(11):1353-1362. DOI: 10.1002/nbm.2960

12. Bell CC. DSM-IV: Diagnostic and Statistical Manual of Mental Disorders. JAMA: The Journal of the American Medical Association. 1994; 272(10):828. DOI: 10.1001/JAMA.1994.03520100096046

13. Godlewska BR, Near J, Cowen PJ. Neurochemistry of major depression: a study using magnetic resonance spectroscopy. Psychopharmacology (Berl). 2015; 232(3):501-507. DOI: 10.1007/s00213-014-3687-y

14. Harvey BH, Joubert C, du Preez JL et al. Effect of chronic N-acetyl cysteine administration on oxidative status in the presence and absence of induced oxidative stress in rat striatum. Neurochem Res. 2008; 33(3):508-517. DOI: 10.1007/s11064-007-9466-y

15. Altamura C, Maes M, Dai J et al. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol. 1995; 5 Suppl:71-75. DOI: 10.1016/0924-977x(95)00033-l

16. Shungu DC. N-acetylcysteine for the treatment of glutathione deficiency and oxidative stress in schizophrenia. Biol Psychiatry. 2012; 71(11):937-938. DOI: 10.1016/j.biopsych.2012.03.025

17. Godlewska BR, Yip SW, Near J et al. Cortical glutathione levels in young people with bipolar disorder: a pilot study using magnetic resonance spectroscopy. Psychopharmacology (Berl). 2014; 231(2):327-332. DOI: 10.1007/s00213-013-3244-0

18. Lagopoulos J, Hermens DF, Tobias-Webb J et al. In vivo glutathione levels in young persons with bipolar disorder: a magnetic resonance spectroscopy study. J Psychiatr Res. 2013; 47(3):412-417. DOI: 10.1016/j.jpsychires.2012.12.006

19. Gawryluk JR, Mazerolle EL, Brewer KD et al. Investigation of fMRI activation in the internal capsule. BMC Neurosci. 2011; 12:56. DOI: 10.1186/1471-2202-12-56

20. Sanacora G, Gueorguieva R, Epperson CN et al.. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004; 61(7):705-713. DOI: 10.1001/archpsyc.61.7.705

21. Walter H, Berger M, Schnell K. Neuropsychotherapy: conceptual, empirical and neuroethical issues. Eur Arch Psychiatry Clin Neurosci. 2009; 259 Suppl 2:S173-182. DOI: 10.1007/s00406-009-0058-5

22. Murrough JW, Mao X, Collins KA et al. Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. NMR Biomed. 2010; 23(6):643-650. DOI: 10.1002/nbm.1512

23. Price RB, Shungu DC, Mao X et al. Amino acid neurotransmitters assessed by proton magnetic resonance spectroscopy: relationship to treatment resistance in major depressive disorder. Biol Psychiatry. 2009; 65(9):792-800. DOI: 10.1016/j.biopsych.2008.10.025

24. Lecrux C, Hamel E. Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond B Biol Sci. 2016; 371(1705):20150350. DOI: 10.1098/rstb.2015.0350

25. Arrubla J, Farrher E, Strippelmann J et al. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res. 2017; 95(9):1796-1808. DOI: 10.1002/jnr.24010

26. Duncan NW, Wiebking C, Northoff G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev. 2014; 47:36-52. DOI: 10.1016/j.neubiorev.2014.07.016

27. Enzi B, Duncan NW, Kaufmann J et al. Glutamate modulates resting state activity in the perigenual anterior cingulate cortex — a combined fMRI-MRS study. Neuroscience. 2012 ; 227:102-109. DOI: 10.1016/j.neuroscience.2012.09.039

28. Levar N, van Leeuwen JMC, Puts NAJ et al. GABA Concentrations in the Anterior Cingulate Cortex Are Associated with Fear Network Function and Fear Recovery in Humans. Front Hum Neurosci. 2017; 11:202. DOI: 10.3389/fnhum.2017.00202

29. Wiebking C, Duncan NW, Tiret B et al. GABA in the insula — a predictor of the neural response to interoceptive awareness. Neuroimage. 2014; 86:10-18. DOI: 10.1016/j.neuroimage.2013.04.042

30. Wiebking C, Bauer A, de Greck M et al. Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed “material me”. World J Biol Psychiatry. 2010; 11(3):538-549. DOI: 10.3109/15622970903563794

31. Koush Y, Rothman DL, Behar KL et al. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab. 2022; 42(6):911-934. DOI: 10.1177/0271678X221076570

32. Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012; 379(9820):1045-1055. DOI: 10.1016/S0140-6736(11)60602-8.

33. Rajkowska G, Miguel-Hidalgo JJ, Wei J et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999; 45(9):1085-1098. DOI: 10.1016/s0006-3223(99)00041-4

34. Ongür D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998; 95(22):13290-13295. DOI: 10.1073/pnas.95.22.13290

35. Bowley MP, Drevets WC, Ongür D et al. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002; 52(5):404-412. DOI: 10.1016/s0006-3223(02)01404-x

36. Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull. 2001; 55(5):585-595. DOI: 10.1016/s0361-9230(01)00527-5

37. Cotter D, Mackay D, Landau S et al. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001; 58(6):545-553. DOI: 10.1001/archpsyc.58.6.545

38. Cotter D, Mackay D, Chana G et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002; 12(4):386-394. DOI: 10.1093/cercor/12.4.386

39. Uranova N, Orlovskaya D, Vikhreva O et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001; 55(5):597-610. DOI: 10.1016/s0361-9230(01)00528-7

40. Uranova N, Orlovskaya D, Vikhreva O et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001; 55(5):597-610. DOI: 10.1016/s0361-9230(01)00528-7

41. Petroff OA. GABA and glutamate in the human brain. Neuroscientist. 2002; 8(6):562-573. DOI: 10.1177/1073858402238515

42. Benes FM, Todtenkopf MS, Logiotatos P et al. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. J Chem Neuroanat. 2000; 20(3-4):259-269. DOI: 10.1016/s0891-0618(00)00105-8

43. Zarate CA Jr, Du J, Quiroz J et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci. 2003; 1003:273-291. DOI: 10.1196/annals.1300.017

44. Skolnick, Phil. Beyond monoamine-based therapies: clues to new approaches. The Journal of clinical psychiatry. 2002; 63(2):19-23.

45. Hepsomali P, Groeger JA, Nishihira J et al. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front Neurosci. 2020; 14:923. DOI: 10.3389/fnins.2020.00923


Review

For citations:


Korostyshevskaya A.M., Savelov A.A., Abramova V.D., Shtark M.B. Depression: magnetic resonance spectroscopy studies (review). Translational Medicine. 2022;9(4):20-32. (In Russ.) https://doi.org/10.18705/2311-4495-2022-9-4-20-32

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)