Preview

Translational Medicine

Advanced search

Role of neuron-specific enolase, glial fibrillar acidic protein and NR2-antibodies in early diagnostic of ischemic stroke

https://doi.org/10.18705/2311-4495-2021-8-5-5-20

Abstract

Background. Application of a biomarker panel during the acute period of the ischemic stroke (IS) can contribute to a more accurate and prompter diagnostics and verification of the optimal approach to a patients’ management.

Objective. We aimed to clarify values of neuron-specific enolase (NSE), glial fibrillar acidic protein (GFAP) and antibodies for NMDA receptor’s NR2-subunit (NR2-antibodies) in the acute period of IS, to compare with such values in patients without IS, to assess their relationship with severity of neurological deficit and short-term outcome and also to establish sensitivity and specificity of the biomarker panel.

Design and methods. 63 patients with IS and 31 people (11 with chronic brain ischemia and 20 healthy individuals) as controls were included. Results. NSE and GFAP values in IS group exceeded reference values at the onset of disease, lowering significally by 10-14 day, while NR2-antibodies’ values were lower at the onset of the disease compared with controls, rising by 10-14 day. In patients with unfavourable short-term outcome higher levels of NSE, GFAP and NR2-antibodies were found. A panel of such biomarkers has higher sensitivity and specificity than each of them individually.

Conclusion. Researched substances can be used in a biomarker panel for IS diagnostics, brain damage monitoring, patient’s condition evaluation and short outcome prognosing.

About the Authors

A. D. Chaykovskaya
Almazov National Medical Research Centre
Russian Federation

Chaykovskaya Alexandra D., postgraduate student of the Department of Neurology and Psychiatry

Akkuratova str. 2, Saint Petersburg, 197341



M. P. Topuzova
Almazov National Medical Research Centre
Russian Federation

Topuzova Mariya P., MD, PhD, Senior Scientist, Associate Professor of the Department of Neurology and Psychiatry, Senior Researcher of the Research Laboratory of Cerebrovascular Pathology of the Research Department of Neurology and Neurorehabilitation

Saint Petersburg



A. M. Makhanova
Almazov National Medical Research Centre
Russian Federation

Makhanova Albina M., postgraduate student of the Department of Neurology and Psychiatry

Saint Petersburg



A. G. Mikheeva
Almazov National Medical Research Centre
Russian Federation

Mikheeva Anna G., graduate student of the Department of Neurology and Psychiatry

Saint Petersburg



D. S. Korotkova
Almazov National Medical Research Centre

Korotkova Daria S., graduate student of the Department of Neurology and Psychiatry

Saint Petersburg



M. L. Pospelova
Almazov National Medical Research Centre
Russian Federation

Pospelova Maria L., MD, DrSci, Leading Researcher of the Laboratory of Cerebrovascular Pathology of the Research and Development Department of Neurology and Neurorehabilitation, Associate Professor of the Department of Neurology and Psychiatry

Saint Petersburg



E. B. Panina
Almazov National Medical Research Centre

Panina Elena B., MD, PhD, Associate Professor of the Department of Neurology and Psychiatry

Saint Petersburg



T. V. Vavilova
Almazov National Medical Research Centre
Russian Federation

Vavilova Tat’yana V., MD, DrSci, Professor, Head of the Department of Laboratory Medicine and Genetics

Saint Petersburg



E. Yu. Vasilieva
Almazov National Medical Research Centre
Russian Federation

Vasilieva Elena Yu., MD, Head of Central Clinical Diagnostics Laboratory, Assistant of the Department of Laboratory Medicine and Genetics

Saint Petersburg

 



K. V. Simakov
Almazov National Medical Research Centre
Russian Federation

Simakov Kayum V., MD, Head of the Regional Vascular Center, head of the neurological department for the treatment of patients with acute cerebrovascular accident

Saint Petersburg



T. V. Sergeeva
Saint Martyr Elizabeth Sity Hospital
Russian Federation

Sergeeva Tat’yana V., MD, PhD, Deputy Chief Physician for Neurology (Head of the Regional Vascular Center) SPb State Budget Healthcare Institution; Municipal Hospital of the Saint Martyr Elizabeth, Associate Professor of Medical Rehabilitation and Sports Medicine of St. Petersburg State Pediatric Medical University of the Ministry of Health of Russia, Assistant of the Department of Neurosurgery and Neurology of Federal State Budget Educational Institution of Higher Education, Saint-Petersburg State University

Saint Petersburg



T. M. Alekseeva
Almazov National Medical Research Centre
Russian Federation

Alekseeva Tat’yana M., MD, DrSci, Associate Professor, Head of the Department of Neurology and Psychiatry, Leading Researcher of the Laboratory of Cerebrovascular Pathology of the Research and Development Department of Neurology and Neurorehabilitation

Saint Petersburg



References

1. Alexandrova GA. The incidence of the entire population of Russia in 2016. Statistical materials. Part I. // Ministry of Health of the Russian Federation [site]. In Russian. URL : https://minzdrav.gov.ru/ministry/61/22/stranitsa-979/statisticheskie-iinformatsionnye-materialy/statisticheskiy-sbornik-2016-god (дата обращения: 25.11.2021).

2. Hosseininezhad M, Sohrabnejad R. Stroke mimics in patients with clinical signs of stroke. Caspian J Intern Med. 2017; 8(3): 213-216. DOI: https://dx.doi.org/10.22088%2Fcjim.8.3.213

3. Missler U, Wiesmann M, Friedrich C et al. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. 1997; 28: 1956-1960. DOI: https://doi.org/10.1161/01.str.28.10.1956

4. Laskowitz DT, Grocott H, Hsia A, et al. Serum markers of cerebral ischemia. J Stroke Cerebrovasc Dis. 1998 Jul-Aug; 7(4): 234-41. DOI: https://doi.org/10.1016/s1052-3057(98)80032-3

5. Jauch EC, Lindsell C, Broderick J et al.Association of serial biochemical markers with acute ischemic stroke. Stroke. 2006; 37: 2508-2513. DOI: https://doi.org/10.1161/01.STR.0000242290.01174.9e

6. Schoerkhuber W, Kittler H, Sterz F et al. Time course of serum neuron-specific enolase. Stroke. 1999; 30: 1598-1603. DOI: https://doi.org/10.1161/01.str.30.8.1598

7. Grubb NR, Simpson C, Sherwood RA et al. Prediction of cognitive dysfunction after resuscitation from out-of-hospital cardiac arrest using serum neuron-specific enolase and protein S-100. Heart. 2007 Oct; 93(10): 1268- 73. DOI: https://doi.org/10.1136/hrt.2006.091314

8. Oertel M, Schumacher U, McArthur DL et al. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J Clin Neurosci. 2006 Oct; 13(8): 834-40. DOI: https://doi.org/10.1016/j.jocn.2005.11.030

9. Celtik C, Acunaş B, Oner N et al. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004 Sep; 26(6): 398- 402. DOI: https://doi.org/10.1016/j.braindev.2003.12.007

10. Einav S, Kaufman N, Algur N et al. Modeling serum biomarkers S100 beta and neuron-specific enolase as predictors of outcome after out-of- hospital cardiac arrest: an aid to clinical decision making. JAm Coll Cardiol. 2012; 60: 304-311. DOI: https://doi.org/10.1016/j.jacc.2012.04.020

11. Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis. 2005; 20(4): 213-219. DOI: https://doi.org/10.1159/000087701

12. Persson L, Hardemark HG, Gustafsson J et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987; 18(5): 911-918. DOI: https://doi.org/10.1161/01.str.18.5.911

13. Hardemark HG, Persson L, Bolander HG et al. Neuron-specific enolase is a marker of cerebral ischemia and infarct size in rat cerebrospinal fluid. Stroke. 1988; 19(9): 1140-1144. DOI: https://doi.org/10.1161/01.str.19.9.1140

14. Hardemark HG, Ericsson N, Kotwica Z et al. S-100 protein and neuron-specific enolase in CSF after experimental traumatic or focal ischemic brain damage. J Neurosurg. 1989; 71(5 Pt 1): 727-731. DOI: https://doi.org/10.3171/jns.1989.71.5.0727

15. Hatfield RH. McKernan RM. CSF neuron specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res. 1992; 577: 249-252. DOI: https:// doi.org/10.1016/0006-8993(92)90280-m

16. Gruener N, Gross B, Gozlan O et al. Increase in superoxide dismutase after cerebro-vascular accident. Life Sci. 1994; 54: 711-713. DOI: https://doi.org/10.1016/0024-3205(94)90159-7

17. Brea D, Sobrino T, Blanco M et al. Temporal profile and clinical significance of serum neuron-specific enolase and S100 in ischemic and hemorrhagic stroke. Clin Chem Lab Med. 2009; 47: 1513-1518. DOI: https://doi.org/10.1515/CCLM.2009.337

18. Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci. 1997 May 1; 148(1):101-5. DOI: https://doi.org/10.1016/s0022-510x(96)05351-8

19. Butterworth RJ, Wassif WS, Sherwood RA et al. Serum neuron-specific enolase, carnosinase, and their ratio in acute stroke. An enzymatic test for predicting outcome? Stroke. 1996 Nov; 27(11): 2064-8. DOI: https://doi.org/10.1161/01.str.27.11.2064

20. Bharosay A, Bharosay VV, Varma M. et al. Correlation of brain biomarker neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Ind J Clin Biochem. 2012; 27: 186-190. DOI: https://doi.org/10.1007/s12291-011-0172-9

21. Singh HV, Pandey A, Shrivastava AK et al. Prognostic value of neuron specific enolase and IL10 in ischemic stroke and its correlation with degree of neurological deficit. Clin Chim Acta. 2013 Apr 18; 419: 136-8. DOI: https://doi.org/10.1016/j.cca.2013.02.014

22. Selakovic V, Raicevic R, Radenovic L. The increase of neuron-specific enolase in cerebrospinal fluid and plasma as a marker of neuronal damage in patients with acute brain infarction. J Clin Neurosci. 2005; 12(5): 542- 547. DOI: https://doi.org/10.1016/j.jocn.2004.07.019

23. Geiger S, Holdenrieder S, Stieber P et al. Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol. 2007 May; 254(5): 61723. DOI: https://doi.org/10.1007/s00415-006-0407-5

24. Wunderlich MT, Ebert AD, Kratz T et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke. 1999 Jun; 30(6): 1190-5. DOI: https://doi.org/10.1161/01.str.30.6.1190

25. Wunderlich MT, Lins H, Skalej M et al. Neuronspecific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 2006 Sep; 108(6): 558-63. DOI: https://doi.org/10.1016/j.clineuro.2005.12.006

26. Haupt WF, Chopan G, Sobesky J et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol. 2016 Mar; 115(3): 1273-8. DOI: https://doi.org/10.1152/jn.01012.2015

27. Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest. 1996 Apr; 26(4): 298-303. DOI: https://doi.org/10.1046/j.1365-2362.1996.129282.x

28. Pandey A, Shrivastava AK, Saxena K. Neuron specific enolase and c-reactive protein levels in stroke and its subtypes: correlation with degree of disability. Neurochem Res. 2014 Aug; 39(8): 1426-32. DOI: https:// doi.org/10.1007/s11064-014-1328-9

29. Pelinka LE, Kroepfl A, Leixnering M et al. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004 Nov; 21(11): 1553-61. DOI: https://doi.org/10.1089/neu.2004.21.1553

30. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015 Jun; 38(6): 364-74. DOI: https://doi.org/10.1016/j.tins.2015.04.003

31. Wunderlich MT, Wallesch CW, Goertler M. Release of glial fibrillary acidic protein is related to the neurovascular status in acute ischemic stroke. Eur J Neurol. 2006 Oct; 13(10): 1118-23. DOI: https://doi.org/10.1111/j.1468-1331.2006.01435.x

32. Nylén K, Csajbok LZ, Ost M et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmalsubarachnoid hemorrhage. Stroke. 2007 May; 38(5): 1489-94. DOI: https://doi.org/10.1161/STROKEAHA.106.478362

33. Dvorak F, HabererI, Sitzer M et al.Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. 2009; 27(1): 37-41. DOI: https://doi.org/10.1159/000172632

34. Ehrenreich H, Kästner A, Weissenborn K et al. Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients. Mol Med. 2011; 17(11-12): 1306-10. DOI: https://doi.org/10.2119/molmed.2011.00259

35. Stanca DM, Mărginean IC, Sorițău O et al. GFAP and antibodies against NMDA receptor subunit NR2 as biomarkers for acute cerebrovascular diseases. J Cell Mol Med. 2015 Sep; 19(9): 2253-61. DOI: https://doi.org/10.1111/jcmm.12614

36. Vissers JL, Mersch ME, Rosmalen CF et al. Rapid immunoassay for the determination of glial fibrillary acidic protein (GFAP) in serum. Clin Chim Acta. 2006 Apr; 366(1- 2): 336-40. DOI: https://doi.org/10.1016/j.cca.2005.11.017

37. Herrmann M, Vos P, Wunderlich MT et al. Release of glial tissue-specific proteins after acute stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000 Nov; 31(11): 2670-7. DOI: https://doi.org/10.1161/01.str.31.11.2670%20

38. Katsanos AH, Makris K, Stefani D et al. Plasma Glial Fibrillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke. 2017 Sep; 48(9): 2586-2588. DOI: https://doi.org/10.1161/STROKEAHA.117.018409

39. Ren C, Kobeissy F, Alawieh A et al. Assessment of Serum UCH-L1 and GFAPinAcute Stroke Patients. Sci Rep. 2016; 6: 24588. DOI: https://doi.org/10.1038/srep24588

40. Foerch C, Niessner M, Back T et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem. 2012 Jan; 58(1): 237-45. DOI: https://doi.org/10.1373/clinchem.2011.172676

41. Rozanski M, Waldschmidt C, Kunz A et al. Glial Fibrillary Acidic Protein for Prehospital Diagnosis of Intracerebral Hemorrhage. Cerebrovasc Dis. 2017;43(1-2): 76-81. DOI: https://doi.org/10.1159/000453460

42. Foerch C, Curdt I, Yan B et al. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. 2006 Feb; 77(2): 181-4. DOI: https://doi.org/10.1136/jnnp.2005.074823

43. Levite M. Glutamate receptor antibodies in neurological diseases: anti-AMPA-GluR3 antibodies, antiNMDA-NR1 antibodies, anti-NMDA-NR2A/B antibodies, anti-mGluR1 antibodies or anti-mGluR5 antibodies are present in subpopulations of patients with either: epilepsy, encephalitis, cerebellar ataxia,systemic lupus erythematosus (SLE) and neuropsychiatric SLE, Sjogren’s syndrome, schizophrenia, mania or stroke. These autoimmune antiglutamate receptor antibodies can bind neurons in few brain regions, activate glutamate receptors, decrease glutamate receptor’s expression, impair glutamate-induced signaling and function, activate blood brain barrier endothelial cells, kill neurons, damage the brain, induce behavioral/ psychiatric/cognitive abnormalities and ataxia in animal models, and can be removed or silenced in some patients by immunotherapy. J Neural Transm (Vienna). 2014 Aug; 121(8): 1029-75. DOI: https://doi.org/10.1007/s00702-014-1193-3

44. Dambinova SA, Khounteev GA, Izykenova GA et al. Blood test detecting autoantibodies to N-methyl-Daspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem. 2003 Oct; 49(10): 1752-62. DOI: https://doi.org/10.1373/49.10.1752

45. Dambinova SA, Bettermann K, Glynn T et al. Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS One. 2012; 7(7):e42362. DOI: https://doi.org/10.1371/journal.pone.0042362

46. Dambinova SA, Aliev KT, Bondarenko EV et al. The biomarkers of cerebral ischemia as a new method for the validation of the efficacy of cytoprotective therapy. S.S. Korsakov Journal of neurology and psychiatry.. 2017; 117(5): 62-67. In Russian DOI: https://doi.org/10.17116/jnevro20171175162-67

47. Weissman JD, Khunteev GA, Heath R et al. NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci. 2011 Jan 15; 300(1-2): 97-102. DOI: https://doi.org/10.1016/j.jns.2010.09.023

48. Klimenko LL, Skalny AV, Turna AA et al. Serum Trace Element Profiles, Prolactin, and Cortisol in Transient Ischemic Attack Patients. Biol Trace Elem Res. 2016 Jul; 172(1): 93-100. DOI: https://doi.org/10.1007/s12011-015-0586-y

49. Skalny AV, Klimenko LL, Turna AA et al.. Serum trace elements are associated with hemostasis, lipid spectrum and inflammatory markers in men suffering from acute ischemic stroke. Metab Brain Dis. 2017 Jun; 32(3): 779788. DOI: https://doi.org/10.1007/s11011-017-9967-6

50. Sulter G, Elting JW, De Keyser J. Increased serum neuron specific enolase concentrations in patients with hyperglycemic cortical ischemic stroke. Neurosci Lett. 1998; 253:71-73. DOI: https://doi.org/10.1016/s0304-3940(98)00595-3

51. Dambinova SA, Khounteev GA, Skoromets AA. Multiple panel of biomarkers for TIA/stroke evaluation. Stroke. 2002 May; 33(5): 1181-2. DOI: https://doi.org/10.1161/01.str.0000014922.83673.86

52. Kamchatnov PR, Chugunov AV, Ruleva NYu, et al. Autoantibodies to GFAP (glial fibrillary acidic protein) and to dopamine in patients with acute and chronic cerebrovascular disоrders. Health. 2010; 2 (12): 1366-1371. https://doi.org/10.4236/health.2010.212202

53. Gusev EI, Skvortsova VI, Izykenova GA, et al. The level of autoantibodies to glutamate receptors in the blood serum of patients in the acute period of ischemic stroke. S.S. Korsakov Journal of neurology and psychiatry. 1996; 96(5): 68-72. In Russian

54. Lynch JR, Blessing R, White WD, et al. Novel diagnostic test for acute stroke. Stroke. 2004 Jan; 35(1): 57-63. DOI: https://doi.org/10.1161/01.STR.0000105927.62344.4C

55. Reynolds MA, Kirchick HJ, Dahlen JR, et al. Early biomarkers of stroke. Clin Chem. 2003 Oct; 49(10): 1733-9. DOI: https://doi.org/10.1373/49.10.1733

56. Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC; BRAIN Study Group. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke. 2009 Jan; 40(1): 77-85. DOI: https://doi.org/10.1161/STROKEAHA.108.516377

57. Knauer C, Knauer K, Müller S, et al. A biochemical marker panel in MRI-proven hyperacute ischemic stroke-a prospective study. BMC Neurol. 2012 Mar 8; 12:14. DOI: https://doi.org/10.1186/1471-2377-12-14


Review

For citations:


Chaykovskaya A.D., Topuzova M.P., Makhanova A.M., Mikheeva A.G., Korotkova D.S., Pospelova M.L., Panina E.B., Vavilova T.V., Vasilieva E.Yu., Simakov K.V., Sergeeva T.V., Alekseeva T.M. Role of neuron-specific enolase, glial fibrillar acidic protein and NR2-antibodies in early diagnostic of ischemic stroke. Translational Medicine. 2021;8(5):5-20. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-5-5-20

Views: 663


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)