Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells
https://doi.org/10.18705/2311-4495-2021-8-5-38-49
Abstract
Background. Biodegradable polymers are one of the most promising groups of materials suitable for creating tissue-engineered scaffolds. The high interest in biopolymers is associated with the possibility of creating scaffolds with desired properties, through the use of mixtures and copolymers. The determination of the key parameters of biocompatibility is the basic purpose for testing created materials.
Objective. To perform the comparative in vitro study of biocompatibility properties of biopolymer scaffolds produced using polycaprolactone, polylactic acid, their mixtures and copolymers by electrospinning technology.
Design and methods. The adhesion properties and cytotoxicity of scaffolds made from polycaprolactone, polylactic acid, copolymer of L- and D-isoforms of lactic acid, their mixtures and co-polymers with the addition of polyglycolic acid were investigated after scaffolds co-cultivation with human mesenchyme stem cells (MSC).
Results. The largest number of spread spindle-shaped MSCs was on the surface of polymers containing polyglycolic acid. Besides, the cells on the surface of the copolymer with polyglycolic acid had the morphology closest to the control. The lowest number of living cells was found on the surface of polylactic acid scaffolds, and the highest on the surface of samples from of polycaprolactone and polylactic acid blend.
Conclusion. Thus, all tested polymers had good adhesion properties in experiments with human mesenchyme stem cells were possessed by biodegradable polymers with the addition of polyglycolic acid.
About the Authors
A. I. MishaninRussian Federation
Mishanin Alexander I., researcher, Institute of molecular biology and genetics
Saint Petersburg
A. N. Panina
Russian Federation
Panina Alice N., PhD student, Institute of molecular biology and genetics
Saint Petersburg
E. N. Bolbasov
Russian Federation
Bolbasov Evgeny N., PhD, researcher
Tomsk
S. I. Tverdokhlebov
Russian Federation
Tverdokhlebov Sergey I., PhD, assistant professor
Tomsk
A. S. Golovkin
Russian Federation
Golovkin Alexey S., DrSci, MD, group leader
Akkuratova str. 2, Saint Petersburg, 197341.
References
1. Williams DF. There is no such thing as a biocompatible material. Biomaterials. 2014; 35(38): 10009– 14. DOI: 10.1016/j.biomaterials.2014.08.035.
2. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016; 11(10): 1775–81. DOI: 10.1038/nprot.2016.123.
3. Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009; 8(6): 457–70. DOI: 10.1038/nmat2441.
4. Santos AR, Ferreira BMP, Duek EAR, Dolder H, Wada MLF. Use of blends bioabsorbable poly(L-lactic acid)/ poly(hydroxybutyrate-co-hydroxyvalerate) as surfaces for Vero cell culture. Brazilian J Med Biol Res. 2005; 38(11): 1623–32. DOI: 10.1590/s0100-879x2005001100009.
5. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys. 2011 Jun; 49(12): 832–64. DOI: 10.1002/polb.22259.
6. Tesfamariam B. Bioresorbable vascular scaffolds : Biodegradation , drug delivery and vascular remodeling. Pharmacol Res. 2016; 107: 163–71. DOI: 10.1016/j.phrs.2016.03.020.
7. Katz AR, Turner RJ. Evaluation of tensile and absorption properties of polyglycolic acid sutures. Surg Gynecol Obstet. 1970; 131(4): 701–16.
8. Ueda H, Tabata Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Adv Drug Deliv Rev. 2003; 55(4): 501–18. DOI: 10.1016/s0169-409x(03)00037-1.
9. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev. 2009; 61(12): 1007–19. DOI: 10.1016/j.addr.2009.07.012.
10. Viknianshchuk AN, Mishanin AI, Tverdokhlebov SI, et al. Approaches to biomaterials testing according to modern biocompatibility paradigm. Translyatsionnaya meditsina=Translational Medicine. 2017; 4(1): 29-40. In Russian. DOI: 10.18705/2311-4495-2017-4-1-29-40.
11. Tsaryk R, Peters K, Unger RE, Feldmann M, HoffmannB,Heidenau F, et al.Improving cytocompatibility of Co28Cr6Mo by TiO2 coating: Gene expression study in human endothelial cells. J R Soc Interface. 2013; 10(86): 20130428. DOI: 10.1098/rsif.2013.0428.
12. Antonova LV, Matveyeva VG, Borisov VV, et al. Impact of various modifications of biodegradable membranous scaffolds surface on multipotent mesenchimal stromal cells adhesion and viability. Biulleten sibirskoi meditsiny=Bulletin of Siberian Medicine. 2012; 11(4): 5-12. In Russian. DOI: 10.20538/1682-0363-2012-4-5-12.
13. Alvim Valente C, Cesar Chagastelles P, Fontana Nicoletti N, Ramos Garcez G, Sgarioni B, Herrmann F, et al. Design and optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications. J Biomed Mater Res — Part A. 2018; 106(6): 1522–34. DOI: 10.1002/jbm.a.36355.
14. Potnis P. A., Tesfamariam B. WSC, Potnis PA, Tesfamariam B, Wood SC. Induction of nicotinamideadenine dinucleotide phosphate oxidase and apoptosis by biodegradable polymers in macrophages: implications for stents. J Cardiovasc Pharmacol . 2011; 57(6): 712–20. DOI: 10.1097/FJC.0b013e31821a4f1e.
15. Tsou CH, Kao BJ, Yang MC, Suen MC, Lee YH, Chen JC, et al. Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylenestyrene composites. Biomed Mater Eng. 2015; 26(Suppl 1): S147– 54. DOI: 10.3233/BME-151300.
16. He Y, Pan Z, Ding JD. Effects of degradation media of polyester porous scaffolds on viability and osteogenic differentiation of mesenchymal stem cells. Acta Polym Sin. 2013; 58(6): 755–64. DOI: 10.3724/SP.J.1105.2013.12439.
17. Chen T, Zhou Y, Tan WS. Influence of lactic acid on the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells. Cell Biol Toxicol. 2009; 25(6): 573–86. DOI: 10.1007/s10565-008-9113-7.
18. Chen L, Bai Y, Liao G, Peng E, Wu B, Wang Y, et al. Electrospun Poly(L-lactide)/Poly(ε-caprolactone) Blend Nanofibrous Scaffold: Characterization and Biocompatibility with Human Adipose-Derived Stem Cells. PLoS One. 2013; 8(8):e71265. DOI: 10.1371/journal.pone.0071265.
19. Piechota-Polanczyk A, Jozkowicz A, Nowak W, EilenbergW, NeumayerC, Malinski T, et al. The Abdominal Aortic Aneurysm and Intraluminal Thrombus: Current Concepts of Development and Treatment. Front Cardiovasc Med. 2015; 2(19). DOI: 10.3389/fcvm.2015.00019.
20. Zhang C, Zhai T, Turng LS. Electrospinning of poly(lactic acid)/polycaprolactone blends: Investigation of the governing parameters and biocompatibility. J Polym Eng. 2018; 38(4): 409–17. DOI: 10.1515/polyeng-2017-0194.
21. Tsou CH, Yao WH, Lu YC, Tsou CY, Wu CS, Chen J, et al. Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers (Basel). 2017; 9(3): 1–13. DOI: 10.3390/polym9030100
22. Li RY, Liu ZG, Liu HQ, Chen L, Liu JF, Pan YH. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films. Am J Transl Res. 2015; 7(8): 1357–70.
23. Más BA, De Luna Freire DC, De Melo Cattani SM, Motta AC, Barbo MLP, De Rezende Duek EA. Biological Evaluation of PLDLA Polymer Synthesized as Construct on Bone Tissue Engineering Application. Mater Res. 2016; 19(2): 300–7. DOI: 10.1590/1980-5373-MR-2015-0559.
24. Santos Jr. AR. Tissue Engineering: Bioresorbable Polymers for Tissue Engineering. 2010; 225–46. Daniel Eberli (Ed.), ISBN: 978-953-307-079-7, InTech, DOI: 10.5772/8580.
25. Jiménez N, Krouwer VJD, Post JA. A new, rapid and reproducible method to obtain high quality endothelium in vitro. Cytotechnology. 2013; 65(1): 1–14. DOI: 10.1007/s10616-012-9459-9.
26. Biggs MJP, Fernandez M, Thomas D, Cooper R, Palma M, Liao J, et al. The Functional Response of Mesenchymal Stem Cells to Electron-Beam Patterned Elastomeric Surfaces Presenting Micrometer to Nanoscale Heterogeneous Rigidity. Adv Mater. 2017; 29(39). DOI: 10.1002/adma.201702119.
Review
For citations:
Mishanin A.I., Panina A.N., Bolbasov E.N., Tverdokhlebov S.I., Golovkin A.S. Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells. Translational Medicine. 2021;8(5):38-49. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-5-38-49