Bioelectric activity of the brain in 3-4 years old children in eyes-open resting state
https://doi.org/10.18705/2311-4495-2021-8-4-47-56
Abstract
Background. Electroencephalography is the main technique for assessing the functional state of the brain. Indications for EEG are diagnosis of paroxysmal states, prediction of the outcome of a pathological state, evaluation of bioelectrical activity if brain death is suspected. Up to 90 % of the native EEG in calm wakefulness in healthy individuals is occupied by “alpha activity”. In children in active wakefulness, the EEG pattern depends to a great extent on their age.
Objective. The aim of the work was to assess EEG parameters in children aged 3–4 years in eyes-open resting state. Design and methods. 31 healthy participants aged 3–4 years were enrolled. EEG was registered for 30 minutes in a state of passive wakefulness in the supine position with open eyes. Average values of the power of the spectra for the alpha-rhythm, delta-rhythm and theta-rhythm in the frontal and temporal leads, as well as the ratio of the average power of alpha/theta and alpha/delta rhythms in the frontal and temporal leads were calculated.
Results. Average power of the alpha-rhythm was significantly higher over the right frontal lobe than over the right frontal-temporal area, as well as average amplitude of it was significantly higher in F3-A1 than F7-A1, F4-A2 than F8-A2, which is associated with the articulatory praxis. Average alpha-rhythm power was significantly higher in T5-A1 than T3-A1 and T6-A2 than T4-A2, which corresponds to the recognition and naming of objects optically. Significant differences according to the total average power of the alpha- and theta-rhythms above the frontal and frontal-temporal regions reflect the relationship between the frontal cortex temporal lobes and the premotor zones, i.e. arcuate bundle, responsible for the “speech system”.
Conclusion. The identified patterns can reflect the characteristics of the state of active wakefulness in a 3–4-year-old child and can be used for comparison in the future (both in the course of behavioral experiments and observation of patients with certain pathological processes).
About the Authors
V. B. VoitenkovRussian Federation
Voitenkov Vladislav В., MD, PhD, Head of the Department of Functional Diagnostics; Associate Professor of the Department of Neurology
St. Petersburg
Competing Interests:
The authors declare no conflict of interest
A. B. A. B. Palchick
Russian Federation
Palchick Alexander B., Dr. Sc., prof. Department of neonatology with courses in neurology and obstetrics
and gynecology; Leading Researcher of the Research Laboratory of Physiology and Pathology of Newborns
St. Petersburg
Competing Interests:
The authors declare no conflict of interest
N. A. Savelieva
Russian Federation
Savelieva Natalia A., MD, PhD, Assistant of the Department of Neurology and Medical Genetics
Perm
Competing Interests:
The authors declare no conflict of interest
E. P. Bogdanova
Russian Federation
Bogdanova Evgenia P., MD, Functional Diagnostic Physician
Chelyabinsk
Competing Interests:
The authors declare no conflict of interest
References
1. Гнездицкий В.В., Пирадов М.А. Нейрофизиология комы и нарушения сознания (анализ и интерпретация клинических наблюдений. Иваново: Прес-Сто, 2015. C. 528.
2. Herman ST, Abend NS, Bleck TP, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):87–95. DOI: 10.1097/WNP.0000000000000166.
3. Александров М.В., Чухловин А.А., Павловская М.Е., Костенко И.А., Архипова Н.Б. АЛЬФА-тета континуум: нейрофизиологические механизмы генерации. Медицинский алфавит. 2017;1(14):46-50.
4. Miskovic V, Owens M, Kuntzelman K, et al. Charting moment-to-moment brain signal variability from early to late childhood. Cortex. 2016;83:51–61. DOI: 10.1016/j.cortex.2016.07.006.
5. Понятишин А.Е., Пальчик А.Б., Мелашенко Т.В. и др. Неонатальная электроэнцефалография. СПб.: Медпресс-информ, 2021. C. 288.
6. Kuhlman WN. Functional topography of the human mu rhythm. Electroencephalogr Clin Neurophysiol. 1978 Jan;44(1):83-93. doi: 10.1016/0013-4694(78)90107-4.
7. Stroganova TA, Ravich-Schsherbo IV, Orehova EV, et al. Psihofiziologicheslie osnovy individualnikh razlichiy detey rannego vozrasta. SPb.: SBBGU, 1999. P. 99 In Russian [Строганова Т.А., Равич-Щербо И.В., Орехова Е.В., и др. Психофизиологические основы индивидуальных различий детей раннего возраста СПб.: СПбГУ, 1999. С. 99].
8. Schulte FJ, Bell EF. Bioelectric brain development. An atlas of EEG power spectra in infants and young children. Neuropadiatrie. 1973;4(1):30-45. DOI: 10.1055/s-0028-1091726.
9. Petersén I, Eeg-Olofsson O. The development of the electroencephalogram in normal children from the age of 1 through 15 years. Non-paroxysmal activity. Neuropadiatrie. 1971 Feb;2(3):247-304. DOI: 10.1055/s-0028-1091786.
10. Новикова Л.А. Современные представления о происхождении корковой ритмики анализе электроэнцефалограмм. М.: Медицина, 1960. С. 288.
11. Deco G, Jirsa VK, McIntosh AR. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 2013;36(5):268–274. DOI: 10.1016/j.tins.2013.03.001.
12. Whitford TJ, Rennie CJ, Grieve SM, et al. Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp. 2007;28(3):228–237. DOI: 10.1002/hbm.20273.
13. Miskovic V, Ma X, Chou C, et al. Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood. Neuroimage. 2015;118:237–247. DOI: 10.1016/j.neuroimage.2015.06.013.
14. Coquelet N, Wens V, Mary A, et al. Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood. Sci Rep. 2020;10(1):18986. DOI: 10.1038/s41598-020-75858-0.
15. van Noordt S, Willoughby T. Cortical maturation from childhood to adolescence is reflected in resting state EEG signal complexity. Dev Cogn Neurosci. 2021;48:100945. DOI: 10.1016/j.dcn.2021.100945.
16. Campus C, Signorini S, Vitali H, et al. Sensitive period for the plasticity of alpha activity in humans. Dev Cogn Neurosci. 2021;49:100965. DOI: 10.1016/j.dcn.2021.100965.
17. Touwen B. Examination of the child with minimal neurological dysfunction. Clinics Develop Med. 1979;71:56-70.
18. Craig GC. Developmental psychology. Prentice Hall, 1992. 674 p.
19. Блонский П.П. Основы педологии. М., 1930.
20. Выготский Л.С. Вопросы детской (возрастной) психологии. В кн.: Собрание сочинений. Т. 6. М.: Педагогика, 1984. c. 243–403.
21. Пальчик А.Б. Лекции по неврологии развития. М.: Просвещение/Бином, 2013. С. 368.
22. Визель Т.Г. Значение процессов полушарного взаимодействия в патогенезе нарушений речи. Асимметрия. 2010;4(4):9-21.
23. Калашникова, Т.П. Нарушение речи у детей. Пермь: Изд-во Пермского нац. исслед. политехнического ун-та, 2017. С. 217.
24. Синкин М.В., Крылов В.В. Ритмичные и периодические паттерны ЭЭГ. Классификация и клиническое значение. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2018;118(10-2):9-20. DOI: 10.17116/jnevro20181181029.
25. Ekusheva EV, Danilov AB, Vein AM. Hemiparesis syndrome: clinical-pathophysiological analysis. Zhurnal nevrologii I psihiatrii im. S.S. Korsakova. 2002;102(11):18.
Review
For citations:
Voitenkov V.B., Palchick A.A., Savelieva N.A., Bogdanova E.P. Bioelectric activity of the brain in 3-4 years old children in eyes-open resting state. Translational Medicine. 2021;8(4):47-56. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-4-47-56