Left ventricle longitudinal strain of the endocardial and epicardial layers and left ventricle remodelling in children born with low and extremely low body weight aged from one to five years old
https://doi.org/10.18705/2311-4495-2021-8-2-23-36
Abstract
Background. In last decades, the number of babies born preterm has increased significantly. Premature newborns are more susceptible to cardiovascular disease in the long-term. To identify subclinical myocardial impairment in premature infants, an assessment of of the left ventricle (LV) deformation could be used.
Objective. The aim of the study was to study the left ventricle (LV) Longitudinal Strain of the endocardial, middle and epicBardial layers in children born with very low and extremely low body weight, at the age from one to five years.
Design and methods. The study included 88 children aged from one to 5 years old, born very premature with very low and extremely low body weight. The comparison group consisted of 43 healthy children of the same age, born full-term. The LV Longitudinal Strain of the endocardial, middle and epicardial layers was studied using the Speckle Tracking Imaging-2D Strain.
Results. In children aged 1 to 5 years, born with very low and extremely low body weight, changes in the gradient of transmural wall Strain and a decrease in LV segments longitudinal strain were detected in 15.90 % and 14.77 % of cases, respectively. Mothers of children born prematurely and who subsequently registered disturbance of the transmural gradient of left ventricular strain in 10 cases (71.43 %) had a history of threatened termination of pregnancy. The threat of termination of pregnancy was noted in all women whose children had a decrease in LV segmental strain. In children who have normal of LV segmental strain, the threat of termination of pregnancy in mothers was registered in 16 cases (26.23 %). LV remodeling is observed in children with a change in the gradient of transmural wall strain or and with a decrease in LV longitudinal segment strain.
Conclusion. Changes in the transmural gradient of wall deformation or reduction of segmental LV deformation in the longitudinal direction in premature infants require correction of the conventional algorithm of dispensary observation in an outpatient setting.
About the Authors
E. N. PavlyukovaRussian Federation
Pavlyukova Elena N., Dr. Sci., Professor, Head of Department of Atherosclerosis and Chronic Ischemic Heart Disease
Kievskaya str., 111a, Tomsk, 634012
M. V. Kolosova
Russian Federation
Kolosova Marina V., Dr. Sci., Professor, Head of Department of Children Diseases
Tomsk
G. V. Neklyudova
Russian Federation
Neklyudova Galina V., PhD Student
Tomsk
R. S. Karpov
Russian Federation
Karpov Rostislav S., Academician, Scientific Director
Tomsk
References
1. Fyfe KL, Yiallourou SR, Wong FY, et al. The development of cardiovascular and cerebral vascular control in preterm infants. Sleep Med Rev. 2014;18(4):299–310. DOI: 10.1016/j.smrv.2013.06.002.
2. Hamilton BE, Martin JA, Osterman MJK, et al. Births: Final Data for 2014. Natl Vital Stat Rep. 2015;64(12):1–64.
3. Crump C, Sundquist K, Sundquist J, et al. Gestational age at birth and mortality in young adulthood. JAMA. 2011;306(11):1233–1240. DOI: 10.1001/jama.2011.1331.
4. Mohlkert L-A, Hallberg J, Broberg O, et al. Preterm arteries in childhood: dimensions, intima-media thickness, and elasticity of the aorta, coronaries, and carotids in 6-y-old children born extremely preterm. Pediatr Res. 2017;81(2):299–306. DOI: 10.1038/pr.2016.212.
5. LewandowskiAJ,Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. DOI: 10.1161/CIRCULATIONAHA.112.126920.
6. Mercuro G, Bassareo PP, Flore G, et al. Prematurity and low weight at birth as new conditions predisposing to an increased cardiovascular risk. Eur J Prev Cardiol. 2013;20(2):357–367. DOI: 10.1177/2047487312437058.
7. Raju TNK, Pemberton VL, Saigal S, et al. Long-term healthcare outcomes of preterm birth: an executive summary of a conference sponsored by the national institutes of health. J Pediatr. 2017;181:309–318.e1. DOI: 10.1016/j.jpeds.2016.10.015.
8. Chehade H, Simeoni U, Guignard J-P, et al. Preterm birth: long term cardiovascular and renal consequences. Curr Pediatr Rev. 2018;14(4):219–226. DOI: 10.2174/1573396314666180813121652.
9. Takigiku K, Takeuchi M, Izumi C, et al. Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J. 2012;76(11):2623–2632. DOI: 10.1253/circj.cj-12-0264.
10. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270. DOI: 10.1093/ehjci/jev014
11. Trivedi SJ, Altman M, Stanton T, et al. Echocardiographic strain in clinical practice. Heart Lung Circ. 2019;28(9):1320–1330. DOI: 10.1016/j.hlc.2019.03.012.
12. Levy PT, El-KhuffashA, Patel MD, et al. Maturational patterns of systolic ventricular deformation mechanics by two-dimensional speckle-tracking echocardiography in preterm infants over the first year of age. J Am Soc Echocardiogr. 2017;30(7):685–698.e1. DOI: 10.1016/j.echo.2017.03.003.
13. Li Y, Xie M, Wang X, et al. Impaired right and left ventricular function in asymptomatic children with repaired tetralogy of Fallot by twodimensional speckle tracking echocardiography study. Echocardiography. 2015;32(1):135–143. DOI: 10.1111/echo.12581.
14. Khan U, Omdal TR, Matre K, et al. What is left ventricular strain in healthy neonates? A systematic review and meta-analysis. Pediatr Cardiol. 2020;41(1):1–11. DOI: 10.1007/s00246-019-02219-8.
15. Cantinotti M, Scalese M, Giordano R, et al. Normative data for left and right ventricular systolic strain in healthy Caucasian Italian children by two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2018;31(6):712–720.e6. DOI: 10.1016/j.echo.2018.01.006.
16. Labombarda F, Leport M, Morello R, et al. Longitudinal left ventricular strain impairment in type 1 diabetes children and adolescents: a 2D speckle strain imaging study. Diabetes Metab. 2014;40(4):292–298. DOI: 10.1016/j.diabet.2014.03.007.
17. Abou R, Leung M, Khidir MJH, et al. Influence of aging on level and layer-specific left ventricular longitudinal strain in subjects without structural heart disease. Am J Cardiol. 2017;120(11):2065–2072. DOI: 10.1016/j.amjcard.2017.08.027.
18. Chan-Dewar F, Oxborough D, Shave R, et al. Left ventricular myocardial strain and strain rates in subendocardial and sub-epicardial layers before and after a marathon. Eur J Appl Physiol. 2010;109(6):1191–1196. DOI: 10.1007/s00421-010-1469-8.
19. El-Khuffash A, Schubert U, Levy PT, et al. Deformation imaging and rotational mechanics in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res. 2018;84(Suppl 1):30–45. DOI: 10.1038/s41390-018-0080-2.
20. Forsey J, Friedberg MK, Mertens L. Speckle tracking echocardiography in pediatric and congenital heart disease. Echocardiography. 2013;30(4):447–459. DOI: 10.1111/echo.12131.
21. ShiJ,PanC,KongD,etal.Leftventricularlongitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography. 2016;33(4):510–518. DOI: 10.1111/echo.13132.
22. Yu W, Li S-n, Chan GCF, et al. Transmural strain and rotation gradient in survivors of childhood cancers. Eur Heart J Cardiovasc Imaging. 2013;14(2):175–182. DOI: 10.1093/ehjci/jes143.
23. Esposito R, Santoro C, Sorrentino R, et al. Layerspecific longitudinal strain in Anderson-Fabry disease at diagnosis: A speckle tracking echocardiography analysis. Echocardiography. 2019;36(7):1273–1281. DOI: 10.1111/echo.14399.
24. Leitman M, Lysiansky M, Lysyansky P, et al. Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr. 2010;23(1):64–70. DOI: 10.1016/j.echo.2009.10.004.
25. Lumens J, Delhaas T, Arts T, et al. Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol Heart Circ Physiol. 2006;291(4):H1573–1579. DOI: 10.1152/ajpheart.00074.2006
26. Crispi F, Miranda J, Gratacós E. Long-term cardiovascular consequences of fetal growth restriction: biology,clinicalimplications,andopportunitiesforprevention of adult disease. Am J Obstet Gynecol. 2018;218(2S):S869– S879. DOI: 10.1016/j.ajog.2017.12.012.
27. Zaharie GC, Hasmasanu M, Blaga L, et al. Cardiac left heart morphology and function in newborns with intrauterine growth restriction: relevance for long-term assessment. Med Ultrason. 2019;21(1):62–68. DOI: 10.11152/mu-1667.
28. Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. (Lausanne). 2019;10:55. DOI: 10.3389/fendo.2019.00055.
29. Cox DJ, BaiW, PriceAN, et al.Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr Res. 2019;85(6):807–815. DOI: 10.1038/s41390-018-0171-0
30. Cinar B, Sert A, Gokmen Z, et al. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction. Cardiol Young. 2015;25(2):301–307. DOI: 10.1017/S1047951113002199.
31. Telles F, McNamara N, Nanayakkara S, et al. Changes in the preterm heart from birth to young adulthood: a meta-analysis. Pediatrics. 2020;146(2):e20200146. DOI: 10.1542/peds.2020-0146.
32. Bensley JG, Moore L, De Matteo R, et al. Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res. 2018;83(4):880–888. DOI: 10.1038/pr.2017.324
33. Faa A, Podda E, Fanos V. Stem cell markers in the heart of the human newborn. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM). 2016; 5(2): e050204.
34. Porter Jr GA, Hom J, Hoffman D, et al. Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol. 2011;31(2):75–81. DOI: 10.1016/j.ppedcard.2011.02.002.
35. Bensley JG, Stacy VK, De Matteo R, et al. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur Heart J. 2010;31(16):2058–2066. DOI: 10.1093/eurheartj/ehq104.
36. Pervolaraki E, Dachtler J, Anderson RA, et al. Ventricular myocardium development and the role of connexinsinthehumanfetalheart.SciRep.2017;7(1):12272. DOI: 10.1038/s41598-017-11129-9.
37. Breatnach CR, Forman E, Foran A, et al. Left ventricular rotational mechanics in infants with hypoxic ischemic encephalopathy and preterm infants at 36 weeks postmenstrual age: a comparison with healthy term controls. Echocardiography. 2017;34(2):232–239. DOI: 10.1111/echo.13421.
38. Faa A, Xanthos T, Fanos V, et al. Hypoxia-induced endothelial damage and microthrombosis in myocardial vessels of newborn landrace/large white piglets. Biomed Res Int. 2014;2014:619284. DOI: 10.1155/2014/619284.
39. LaRosa DA, Ellery SJ, Walker DW, et al. Understanding the full spectrum of organ injury following intrapartum asphyxia. Front Pediatr. 2017;5:16. DOI: 10.3389/fped.2017.00016.
40. Lewandowski AJ. The preterm heart: a unique cardiomyopathy? Pediatr Res. 2019;85(6):738–739. DOI: 10.1038/s41390-019-0301-3.
41. BassareoPP,FanosV,CrisafulliA,etal.Cardiovascular phenotype in extremely low birth weight infants: long-term consequences. J Matern Fetal Neonatal Med. 2011;24 Suppl 2:3–5. DOI: 10.3109/14767058.2011.604932
Review
For citations:
Pavlyukova E.N., Kolosova M.V., Neklyudova G.V., Karpov R.S. Left ventricle longitudinal strain of the endocardial and epicardial layers and left ventricle remodelling in children born with low and extremely low body weight aged from one to five years old. Translational Medicine. 2021;8(2):23-36. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-2-23-36