Exogenous surfactant in the treatment of severe pneumonia caused by the SARS-CoV-2 virus
https://doi.org/10.18705/2311-4495-2020-7-6-55-64
Abstract
About the Authors
A. E. BautinRussian Federation
Bautin Andrey E., Dr. Sci., MD, Associate Professor, Head of the Research Laboratory of Anesthesiology and Intensive Care
Akkuratova str. 2, Saint Petersburg, 197341
V. V. Aptekar
Russian Federation
Aptekar Valeriya V., clinical resident of the Department of Anesthesiology and Reanimatology
Saint Petersburg
K. V. Lapshin
Russian Federation
Lapshin Kirill B., Head of the Department of Anesthesiology and Intensive Care No. 14
Saint Petersburg
A. P. Semenov
Russian Federation
Semenov Andrey P., Head of the Cardiology Department No. 7
Saint Petersburg
E. V. Mineeva
Russian Federation
Mineeva Evgeniya V., MD, PhD, Head of the Cardiology Department No. 6
Saint Petersburg
N. A. Anokhina
Russian Federation
Anokhina Natalya A., Head of the Department of Rheumatology
Saint Petersburg
I. E. Titova
Russian Federation
Titova Inga E., Cardiologist of the Department of Surgical Treatment of Oncological Patients
Saint Petersburg
N. A. Tyan
Russian Federation
Tyan Natalia A., Head of the Cardiology Department of the Consultative and Diagnostic Center
Saint Petersburg
K. A. Zagorodnikova
Russian Federation
Zagorodnikova Ksenia A., MD, PhD, Head of the Department of Clinical Pharmacology
Saint Petersburg
N. A. Lesteva
Russian Federation
Lesteva Natalya A., MD, PhD, Head of the Department of Anesthesiology and Intensive Care
Saint Petersburg
I. Yu. Kasherininov
Russian Federation
Kasherininov Igor Yu., MD, PhD, Head of the Department of Anesthesiology and Intensive Care No. 4
Saint Petersburg
References
1. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180 (7): 934–943.
2. Suleyman G, Fadel RA, Malette KM, et al. Clinical characteristics and morbidity associated with coronavirus disease 2019 in a series of patients in Metropolitan Detroit. JAMA Netw Open. 2020; 3 (6): e2012270.
3. Chand S, Kapoor S, Orsi D, et al. COVID-19associated critical illness-report of the first 300 patients admitted to intensive care units at a New York City Medical Center. J Intensive Care Med. 2020; 35 (10): 963–970.
4. Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020; 172 (9): 629–632.
5. Günther A, Siebert C, Schmidt R, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996; 153 (1): 176–184.
6. Numata M, Kandasamy P, Nagashima Y, et al. Phosphatidylglycerol suppresses influenza A virus infection. Am J Respir Cell Mol Biol. 2012; 46 (4): 479–487.
7. Fukushi M, Yamashita M, Miyoshi-Akiyama T, et al. Laninamivir octanoate and artificial surfactant combination therapy significantly increases survival of mice infected with lethal influenza H1N1 virus. PLoS One. 2012; 7 (8): e42419.
8. Busani S, Girardis M, Biagioni E, et al. Surfactant therapy and intravenous zanamivir in severe respiratory failure due to persistent influenza A/H1N1 2009 virus infection. Am J Respir Crit Care Med. 2010; 182 (10): 1334.
9. Kula R, Maca J, Sklienka P, et al. Exogenous surfactant as a component of complex non-ECMO therapy for ARDS caused by influenza A virus (2009 H1N1). Bratisl Lek Listy. 2011; 112 (4): 218–222.
10. Witczak A, Prystupa A, Kurys-Denis E, et al. Acute respiratory distress syndrome (ARDS) complicating influenza A/H1N1v infection — a clinical approach. Ann Agric Environ Med. 2013; 20 (4): 820–822.
11. Takano H. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2. Med Hypotheses. 2020; 144: 110020.
12. Schousboe P, Wiese L, Heiring C, et al. Assessment of pulmonary surfactant in COVID-19 patients. Crit Care. 2020; 24 (1): 552.
13. Busani S, Dall’Ara L, Tonelli R, et al. Surfactant replacement might help recovery of low-compliance lung in severe COVID-19 pneumonia. Ther Adv Respir Dis. 2020; 14: 1753466620951043.
14. Bautin AE, Osovskih VV, Hubulava GG, et al. Multicenter clinical trials of surfactant-BL for the treatment of adult respiratory distress syndrome. Klinicheskie Issledovaniya Lekarstvennykh Sredstv v Rossii= Clinical trials of medicines in Russia. 2002; 2: 18–23. In Russian
15. Vlasenko A, Osovskikh V, Tarasenko M, et al. Efficiency of surfactant therapy for ALI/ARDS in homogenous nosologic groups of patients. Eur Respir J. 2005; 26 (SUPPL 49): 90.
16. Bautin A, Khubulava G, Kozlov I, et al. Surfactant therapy for patients with ARDS after cardiac surgery. J Liposome Res. 2006; 16: 265–272.
17. Alekseev AM, SHupinskij OV, Hrapov KN. Intensive care of patients with pneumonia complicated severe influenza A (H1N1). Vestnik anesteziologii i reanimatologii=Bulletin of Anesthesiology and Reanimatology. 2009; 6 (6): 35–38. In Russian
18. Guidelines of the all-russian public organization “Federation ofanesthesiologists and reanimatologists” for treatment ofinfluenza A/H1N1/2009. Vestnik anesteziologii i reanimatologii=Bulletin of Anesthesiology and Reanimatology. 2011; (1): 41–47. In Russian
Review
For citations:
Bautin A.E., Aptekar V.V., Lapshin K.V., Semenov A.P., Mineeva E.V., Anokhina N.A., Titova I.E., Tyan N.A., Zagorodnikova K.A., Lesteva N.A., Kasherininov I.Yu. Exogenous surfactant in the treatment of severe pneumonia caused by the SARS-CoV-2 virus. Translational Medicine. 2020;7(6):55-64. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-6-55-64