Preview

Translational Medicine

Advanced search

The relationship of bioelectric activity and structural changes in the hippocampus at pharmacoresistant temporal lobe epilepsy

https://doi.org/10.18705/2311-4495-2021-8-2-5-13

Abstract

Background. Epilepsy is one of the most common neurological diseases globally. The unified concept about the role of hippocampus in the development of pharmacoresistant temporal lobe epilepsy is currently missing. Patients with pharmacoresistant temporal lobe epilepsy is often carried out by invasive electrocorticography to identify an epileptic focus. Registration of bioelectric activity of the hippocampus and comparison of data from the MRI pattern of the patient will determine the neurophysiological correlates of structural changes in hippocampus.
Objective. The aim of the work was to determine the neurophysiological correlates of structural changes in the hippocampus in patients with focally caused temporal lobe epilepsy.
Design and methods. The study was based on the analysis of the results of extraoperative invasive monitoring of the bioelectrical activity of the cortex and hippocampal complex, performed in 19 patients with focally caused drug-resistant epilepsy. The quantitative analysis included 34 tracks of hippocampal activity.
Results. A distinctive feature of the bioelectrical activity of the hippocampal complex with its structural damage is the stable dominance of delta activity, which makes up 40–45 % of the total spectrum power. When the hippocampal complex is included in the epileptic system, high-index epileptiform activity is recorded. In the absence of structural damage to the hippocampal complex, the pattern is predominantly formed by the activity of theta and alpha frequency ranges. However, in the group of patients with the absence of a neuroimaging picture of sclerotic changes in the hippocampus, in 63 % of cases, a neurophysiological pattern of “prolapse” was recorded on the electrocorticogram. The spontaneous activity of the hippocampus had a low coherent relationship with the parameters of activity in the cortex of the ipsilateral and contralateral temporal lobes.
Conclusions. The electrophysiological correlate of MR-positive structural changes in the hippocampal complex in drug-resistant epilepsy is the pattern of “loss of bioelectric activity”. Spontaneous hippocampal activity is generated independently of activity in the cortex of the ipsilateral and contralateral temporal lobes.

About the Authors

E. A. Astakhova
Almazov National Medical Research Centre
Russian Federation

Astakhova Ekaterina A., Resident of the Department of Internal Diseases  

Saint Petersburg



S. E. Cherenkova
Almazov National Medical Research Centre
Russian Federation

Cherenkova Sofiia E.,  MD, PhD Student, Neurosurgery
Department, Polenov Neurosurgical Institute

Mayakovskaya str. 12, Saint Petersburg, 191014



E. V. Marchenko
Almazov National Medical Research Centre
Russian Federation

Marchenko Elena V., MD, Doctor of Functional Diagnosis of the Clinical Neurophysiology Department, Polenov Neurosurgical Institute 

Saint Petersburg



K. I. Sebelev
Almazov National Medical Research Centre
Russian Federation

Sebelev Konstantin I., MD, PhD, Head of the Radiology Department with Angiographic Complex, Polenov Neurosurgical Institute 

Saint Petersburg



M. V. Aleksandrov
Almazov National Medical Research Centre
Russian Federation

Aleksandrov Mikhail V., MD, PhD, Head of Clinical Neurophysiology Department, Polenov Neurosurgical Institute 

Saint Petersburg



References

1. Epilepsy: a public health imperative World Health Organization.: https://www.who.int/news-room/fact-sheets/detail/epilepsy (20 June, 2019)

2. Kuralbaev A.K., Zabrodskaya Yu.M., Ivanova N.E., et al., Pathomorphological changes in the hippocampus with temporal lobe epilepsy. Literature review: Russian Neurosurgical J named after Prof Polenov. 2017; 9, 2:72-77 In Russian. [Куралбаев А.К., Забродская Ю.М., Иванова Н.Е., и др., Патоморфологические изменения гиппокампа при височной эпилепсии. Литературный обзор: Российский нейрохирургический журнал им. профессора Поленова. 2017; 9, 2: 72-77]

3. Krylov VV: Epylepsy Surgery/ [digest]; edited by Kryliv VV- 2019. p. 400. In Russian. [В.В. Крылов: Хирургия эпилепсии / [сборник] ; под редакцией В.В. Крылова. - 2019. - с.400 ]

4. Mukhin K.Yu., Mironov MB, Tysyachina MD, et al.: Electro-clinical characteristics of patients with symptomatic focal epilepsy with the phenomenon of secondary bilateral synchronization on EEG // Russian J of Pediatric Neurol. 2006; 1; 1:6-17. In Russian. [Мухин К.Ю., Миронов М.Б., Тысячина М.Д., и др. Электро-клиническая характеристика больных симптоматической фокальной эпилепсией с феноменом вторичной билатеральной синхронизации на ЭЭГ // Русский журнал детской неврологии. 2006; 1; 1:6-17.]

5. Bernhardt BC. ,  Fadaie F.,  Liu M., et. al.:Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability, Neurology  2019, 92: 2209-2220. 

6. Negrii T. N., Larkin V. I., Savchenko Yu. N., et al. Hippocampus in the genesis of epilepsy // ONV. 2011.1: 62-65. In Russian [Негрий Т. Н., Ларькин В. И., Савченко Ю. Н., и др. Гиппокамп в генезе эпилепсии // ОНВ. 2011. №1 (104): 62-65. ]

7. Curia, G., Lucchi, C., Vinet, J., et. al.: Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic?. Current medicinal chemistry, 2014, 21(6), p.663–688.

8. Alexandrov MV, Ivanov LB, Lytayev SA et. al. edited by Alexandrov MV;- Electroenephalography. Guide- 2019. p. 224 In Russian. [М.В. Александров, Л. Б. Иванов, С. А . Лытаев и др.; под ред. М. В. Александрова: Электроэнцефалография. Руководство-– 2019.с 224]

9. Zhengge W,  Larivière S, Qiang Xu, et. al.: Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology Sep 2019, 93 (11) 1112-1122

10. Labate A,  Aguglia U,  Tripep G, et. al.:Long-term outcome of mild mesial temporal lobe epilepsy A prospective longitudinal cohort study. Neurology  2016; 86: 1904-1910.

11. Alexandov MV, Chikurov AA, Toporkova OA et. al.; Neurophysiological intraoperative monitoring in neurosurgery: guide -2nd ed., and add. / edited by Alexandrov MV - 2019. P 160. In Russian. [М.В. Александров, А.А. Чикуров, О.А. Топоркова и др.; Нейрофизиологический интраоперационный мониторинг в нейрохирургии: руководство. – 2e изд., и доп. / под ред М.В. Александрова – 2019.c 160.]

12. Zhengge W,  Larivière S, Qiang Xu, et. al.: Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology Sep 2019, 93 (11) 1112-1122

13. Chukhlovin AA, Pavlovskaya ME, Arkhipova NB: Alpha theta continuum: neurophysiological mechanisms of generation. Medical alphabet. Modern functional diagnostics. – 2017;1:46-50. In Russian. [Чухловин А.А., Павловская М.Е., Архипова Н.Б.: Альфа-тета континуум: нейрофизиологические механизмы генерации. Медицинский алфавит. Современная функциональная диагностика. – 2017;1: 46-50.]

14. Sloviter, R.S., Hippocampal epileptogenesis in animal models of mesial temporal lobe epilepsy with hippocampal sclerosis: The importance of the “latent period” and other concepts. Epilepsia, 2018;49: 85-92.

15. Bernhardt BC. ,  Fadaie F.,  Liu M., et. al.:Temporal lobe epilepsy: Hippocampal pathology modulates connectome topology and controllability, Neurology  2019, 92: 2209-2220. 


Review

For citations:


Astakhova E.A., Cherenkova S.E., Marchenko E.V., Sebelev K.I., Aleksandrov M.V. The relationship of bioelectric activity and structural changes in the hippocampus at pharmacoresistant temporal lobe epilepsy. Translational Medicine. 2021;8(2):5-13. (In Russ.) https://doi.org/10.18705/2311-4495-2021-8-2-5-13

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)