Preview

Translational Medicine

Advanced search

Modern robotics in medicine

https://doi.org/10.18705/2311-4495-2020-7-5-91-108

Abstract

Today, robot-assisted surgery and the use of robots in medicine marks a qualitatively new stage in the development of minimally invasive technologies and endovideosurgery, due to the high level of accuracy, functionality and ergonomics of modern robotic systems. With the help of robotic technologies, the quality of diagnostic manipulations as well as the results of therapeutic procedures and surgical interventions are significantly improved, which ultimately leads to an improved prognosis and quality of life for patients, while also expanding the capabilities of clinicians. This review article presents the main historical milestones and prerequisites for the development of automation and robotic technologies used in various industries, from ancient times to the present. The history of the use of robotic procedures in various fields of medicine is briefly described. Special attention is paid to robot-assisted surgery as one of the main bases for applying modern technologies. At the moment, we can safely say that medical robotics plays a very important role in the development of surgery of the future.

About the Authors

M. S. Mosoyan
Almazov National Medical Research Centre
Russian Federation

Mosoyan Mkrtich S., MD, PhD, Dr. Sc., Professor and Chair of the Department of Urology and Robotic Surgery and Head of Centre for Robotic Surgery

Saint Petersburg



D. A. Fedorov
Almazov National Medical Research Centre
Russian Federation

Fedorov Dmitriy A., MD, Department of Urology and Robotic Surgery

Akkuratova str. 2, Saint Petersburg, 197341



References

1. Hernigou P. Ambroise Paré IV: the early history of artificial limbs (from robotic to prostheses). Int Orthop. 2013; 37 (6): 1195–1197.

2. Yates DR, Vaessen C, Roupret M. From Leonardo to da Vinci: the history of robot-assisted surgery in urology. BJU Int. 2011; 108 (11): 1708–1713.

3. Kalan S, Chauhan S, Coelho RF, et al. History of robotic surgery. J Robot Surg. 2010; 4 (3): 141–147.

4. Hegarty NJ, Gill IS. Robotic urologic surgery: an introduction and vision for the future. Robotic Urologic Surgery. London: Springer; 2007: 1–4.

5. Sánchez-Martín FM, Jiménez Schlegl P, Millán Rodriguez F., et al. History of robotics: from archytas of tarentum until Da Vinci robot. (Part II). Actas Urol Esp. 2007; 31 (3): 185–196.

6. Beecher R. C. Puma: Programmable universal machine for assembly. In: Dodd GG, Rossol L, ed. Computer vision and sensor-based robots. Springer, Boston, MA, 1979: 141–152.

7. Harris SJ, Arambula-Cosio F, Mei Q, et al. The Probot — an active robot for prostate resection. Proc Inst Mech Eng H. 1997; 211 (4): 317–325.

8. Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. 1998; 354: 82–91.

9. Jakopec M, Harris SJ, y Baena FR, et al. The Acrobot® system for total knee replacement. Industrial Robot. 2003; 30 (1): 61–66.

10. Marescaux J, Rubino F. The ZEUS robotic system: experimental and clinical applications. Surg Clin North Am. 2003; 83 (6): 1305–1315.

11. Kim HL, Schulam P. The PAKY, HERMES, AESOP, ZEUS, and da Vinci robotic systems. Urol Clin North Am. 2004; 31 (4): 659–669.

12. Kilby W, Dooley JR, Kuduvalli G, et al. The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010; 9 (5): 433–452.

13. Voros S, Haber GP, Menudet JF, et al. ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking. IEEE/ASME transactions on mechatronics. 2010; 15 (6): 879–886.

14. Carpi F, Pappone C. Stereotaxis Niobe magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev Med Devices. 2009; 6 (5): 487–498.

15. Rao S. Endovascular robotic catheters: an emerging transformative technology in the interventional radiology suite. Journal of Radiology Nursing. 2016; 35 (3): 211–217.

16. Smitson CC, Ang L, Pourdjabbar A, et al. Safety and feasibility of a novel, second-generation robotic-assisted system for percutaneous coronary intervention: first-in-human report. J Invasive Cardiol. 2018; 30 (4): 152–156.

17. Mazor Robotics Renaissance. Neurosurgical robotic systems. Functional Neurosurgery and Neuromodulation. 2018: 236.

18. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplasty. 2016; 31 (10): 23532363.

19. Wong JYY, Ho KY. Robotics for advanced therapeutic colonoscopy. Clin Endosc. 2018; 51 (6): 552–557.

20. Mattos LS, Andreff N. The µRALP project: new technologies and systems for robot-assisted laser phonomicrosurgery. 3rd Joint Workshop on New Technologies for Computer/Robot Assisted Surgery; 2013.

21. Di Marco AN, Jeyakumar J, Pratt PJ, et al. Evaluating a novel 3D stereoscopic visual display for transanal endoscopic surgery: a randomized controlled crossover study. Ann Surg. 2016; 263 (1): 36–42.

22. Graetzel CF, Sheehy A, Noonan DP. Robotic bronchoscopy drive mode of the Auris Monarch platform. 2019 International Conference on Robotics and Automation (ICRA). IEEE; 2019: 3895–3901.

23. Troccaz J, Dagnino G, Yang G-Z. Frontiers of medical robotics: from concept to systems to clinical translation. Annu Rev Biomed Eng. 2019; 21: 193–218.

24. Stark M, Pomati S, D’Ambrosio A, et al. A new telesurgical platform — preliminary clinical results. Minim Invasive Ther Allied Technol. 2015; 24 (1): 31–36.

25. Seeliger B, Diana M, Ruurda JP, et al. Enabling single-site laparoscopy: the SPORT platform. Surg endosc. 2019; 33 (11): 3696–3703.

26. Solis M. New frontiers in robotic surgery: the latest high-tech surgical tools allow for superhuman sensing and more. IEEE Pulse. 2016; 7 (6): 51–55.

27. Konietschke R, Hagn U, Nickl M, et al. The DLR MiroSurge — a robotic system for surgery. 2009 IEEE International Conference on Robotics and Automation. IEEE; 2009: 1589–1590.

28. Haig F, Medeiros A, Chitty K, et al. Usability assessment of Versius, a new robot-assisted surgical device for use in minimal access surgery. BMJ Surg Interv Health Technologies. 2020; 2.

29. Peters BS, Armijo PR, Krause C, et al. Review of emerging surgical robotic technology. Surg Endosc. 2018; 32 (4): 1636–1655.

30. Walsh PC, Partin AW, Epstein JI. Cancer control and quality of life following anatomical radical retropubic prostatectomy: results at 10 years. J Urol. 1994; 152 (5 Pt 2): 1831–1836.

31. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001; 87 (4): 408–410.

32. Pushkar DY, Rasner PI, Kolontarev KB. Robotassisted radical prostatectomy: analysis of the first 80 cases. Oncourologiya=Oncourology. 2014; 6 (3): 37–42. In Russian

33. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2007; 51 (6): 1606–1615.

34. Weight CJ, Larson BT, Gao T, et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology. 2010; 76 (3): 631–637.

35. Gettman MT, Blute ML, Chow GK, et al. Roboticassisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology. 2004; 64 (5): 914–918.

36. Al’-Shukri SK, Mosoyan MS, Semenov DYu, et al. Experience of 424 robot-assisted operations in St-Petersburg: radical prostatectomy, partial and radical nephrectomy. Vestnik khirurgii im. I.I. Grekova=Bulletin of surgery I.I. Greeks. 2016; 175 (5): 74–77. In Russian

37. Cacciamani GE, Medina LG, Gill T, et al. Impact of surgical factors on robotic partial nephrectomy outcomes: comprehensive systematic review and meta-analysis. J Urol. 2018; 200 (2): 258–274.

38. Klingler DW, Hemstreet GP, Balaji KC. Feasibility of robotic radical nephrectomy — initial results of singleinstitution pilot study. Urology. 2005; 65 (6): 1086–1089.

39. Gettman MT, Neururer R, Bartsch G, et al. AndersonHynes dismembered pyeloplasty performed using the da Vinci robotic system. Urology. 2002; 60 (3): 509–513.

40. Buffi NM, Lughezzani G, Hurle R, et al. Robotassisted surgery for benign ureteral strictures: experience and outcomes from four tertiary care institutions. European urology. 2017; 71 (6): 945–951.

41. Menon M, Hemal AK, Tewari A, et al. Robot-assisted radical cystectomy and urinary diversion in female patients: technique with preservation of the uterus and vagina. J Am Coll Surg. 2004; 198 (3): 386–393.

42. Lenfant L, Parra J, Verhoest G, et al. Multicentric comparison of surgical outcomes obtained after open radical cystectomy and robot-assisted laparoscopic radical cystectomy for muscle-invasive bladder cancer. European Urology Supplements. 2018; 17 (2): e1027–e1028.

43. Abaza R, Shabsigh A, Castle E, et al. Multiinstitutional experience with robotic nephrectomy with inferior vena cava tumor thrombectomy. J Urol. 2016; 195 (4 Part 1.): 865–871.

44. Mosoyan MS, Chernyavskiy MA, P’yagay VI, et al. A case report of simultaneous mini-invasive treatment of a patient with kidney tumor and tumor thrombus in inferior vena cava. Patologiya krovoobrashcheniya i kardiokhirurgiya= Pathology of the circulatory and cardiac surgery. 2018; 22 (3): 69–74. In Russian

45. Sotelo R, Clavijo R, Carmona O, et al. Robotic simple prostatectomy. J Urol. 2008; 179 (2): 513–515.

46. Novara G, Morlacco A, Autorino R, et al. Robotassisted simple prostatectomy. In: Hemal AK, Menon M, ed. Robotics in genitourinary surgery. 2nd ed. Switzerland, Cham: Springer, 2018: 443–450.

47. Desai MM, Gill IS, Kaouk JH, et al. Robotic-assisted laparoscopic adrenalectomy. Urology. 2002; 60 (6): 1104–1107.

48. Kahramangil B, Berber E. Robotic adrenalectomy. In: Tsuda S, Kudsi OYU, ed. Robotic-assisted minimally invasive surgery. A comprehensive textbook. Switzerland, Cham: Springer, 2019: 109–115.

49. Semenov DYu, Tonoyan AG, Pankova PA, et al. Robot-assisted laparoscopic adrenalectomy. The first experience. Vestnik khirurgii im. I.I. Grekova= Bulletin of surgery I.I. Greeks. 2011; 170 (5): 35–37. In Russian

50. Kriger AG, Teplov AA, Berelavichus SV, et al. Robot-assisted operations in pelvic region. Khirurgiya. Zhurnal im. N.I. Pirogova=Surgery. Journal named after N.I. Pirogov. 2013; 12: 29–36. In Russian

51. Gala RB, Margulies R, Steinberg A, et al. Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy. J Minim Invasive Gynecol. 2014; 21 (3): 353–361.

52. Truong M, Kim JH, Scheib S, et al. Advantages of robotics in benign gynecologic surgery. Curr Opin Obstet Gynecol. 2016; 28 (4): 304–310.

53. Kristensen SE, Mosgaard BJ, Rosendahl M, et al. Robot‐assisted surgery in gynecological oncology: current status and controversies on patient benefits, cost and surgeon conditions – a systematic review. Acta Obstet Gynecol Scand. 2017; 96 (3): 274–285.

54. Popov AA, Atroshenko KV, Manannikova TN, et al. Robotic surgery in gynecology. Akusherstvo i ginekologiya Sankt-Peterburga=Obstetrics and Gynaecology of Saint-Petersburg. 2017; 2: 65–69. In Russian

55. Sun X-Y, Xu L, Lu J-Y, et al. Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Minim Invasive Ther Allied Technol. 2019; 28 (3): 135–142.

56. Renshaw S, Silva IL, Hotouras A, et al. Perioperative outcomes and adverse events of robotic colorectal resections for inflammatory bowel disease: a systematic literature review. Tech Coloproctol. 2018; 22 (3): 161–177.

57. Hussain A, Malik A, Halim MU, et al. The use of robotics in surgery: a review. Int J Clin Pract. 2014; 68 (11): 1376–1382.

58. Ng ATL, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J. 2014; 20 (3): 241–250.

59. Toro JP, Lin E, Patel AD. Review of robotics in foregut and bariatric surgery. Surg Endosc. 2015; 29 (1): 1–8.

60. Karpov OE, Maksimenko AV, Stepanjuk IV, et al. Laparoscopic and robotic technologies in treatment of patients with rectal cancer. Vestnik Nacional’nogo mediko-hirurgicheskogo Centra im. N.I. Pirogova=Bulletin of the National Medical and Surgical Center named after N.I. Pirogov. 2016; 11 (2): 49–53. In Russian

61. Kriger AG, Berelavichus SV, Smirnov AV, et al. Comparative results of open, robot-assisted and laparoscopic distal pancreatic resrction. Khirurgiya. Zhurnal im. N.I. Pirogova=Surgery. Journal them. N.I. Pirogov. 2015; 1: 23–29. In Russian

62. Kriger AG, Berelavichus SV, Gorin DS, et al. Robotassisted resection of duodenal inferior horizontal part and duodeno-jejunal transition. Khirurgiya. Zhurnal im. N.I. Pirogova=Surgery. Journal them. N.I. Pirogov. 2015; 3: 34–37. In Russian

63. Yablonsky PK, Kudryashov GG, Vasilyev IV, et al. Efficiency and safety of robot-assisted thoracoscopic lobectomies when managing pulmonary tuberculosis. Tuberkulez i bolezni legkih=Tuberculosis and Lung Diseases. 2018; 96 (5): 28–35. In Russian

64. Kudryavtsev AS, Yarmoshchuk SV, Zheravin AA, et al. Robotic interventions in thoracic tumors (experience of 30 primary operations). Vestnik khirurgii im. I.I. Grekova=Bulletin of surgery I.I. Greeks. 2017; 176 (2): 107–111. In Russian

65. Shevchenko YuL, Borshchev GG, Fedotov PA. Robot-assisted myocardial revascularization in patient with coronary heart disease (CHS). Vestnik Nacional’nogo mediko-hirurgicheskogo Centra im. N.I. Pirogova=Bulletin of the National Medical and Surgical Center named after N.I. Pirogov. 2011; 6 (2): 138–140. In Russian

66. Shevchenko YuL, Popov LV, Borshchev GG. Robotassisted cardiac surgery – history, realities and perspective. Vestnik Nacional’nogo mediko-hirurgicheskogo Centra im. N.I. Pirogova=Bulletin of the National Medical and Surgical Center named after N.I. Pirogov. 2015; 10 (1): 111–113. In Russian

67. Pavlov VN, Plechev VV, Safiullin RI, et al. Preliminary experience of the aorto-femoral shunting using the Da Vinci surgical system. Kreativnaya hirurgiya i onkologiya=Creative Surgery and Oncology. 2018; 8 (1): 7–13. In Russian

68. Kropotov MA, Mosin SV, Petrova AL, et al. The first experience of transoral robot-assisted surgery in a patient with oropharyngeal cancer (clinical observation). Opuholi golovy i shei=Head and neck tumors. 2017; 7 (2): 106–110. In Russian


Review

For citations:


Mosoyan M.S., Fedorov D.A. Modern robotics in medicine. Translational Medicine. 2020;7(5):91-108. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-5-91-108

Views: 1625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)