Preview

Трансляционная медицина

Расширенный поиск

Роль экзосом в патогенезе сердечно-сосудистых заболеваний

https://doi.org/10.18705/2311-4495-2020-7-5-17-28

Полный текст:

Аннотация

Согласно Всемирной организации здравоохранения, от болезней сердца и сосудов в современном мире ежегодно умирает 17,5 млн человек. Вследствие этого изучение молекулярных механизмов патогенеза сердечно-сосудистых заболеваний имеет критическое значение для разработки новых диагностических и терапевтических стратегий. Одной из стратегий в данном направлении является исследование роли малых внеклеточных везикул, или экзосом, в патогенезе сердечно-сосудистых заболеваний. Изучение экзосомальной транспортной и сигнальной систем в развитии таких патологий, как острый коронарный синдром, стабильная стенокардия, клапанные пороки сердца, гипертрофическая кардиомиопатия, атеросклеротическое поражение периферических артерий является актуальной задачей.

К экзосомам относят сферические везикулы эндосомального происхождения размером 30–100 нм, экспрессируемые практически всеми клетками человеческого организма. Их цитоплазматическая мембрана представляет собой липидный бислой, содержащий в качестве маркеров тетраспанины CD9, CD63, CD81 и CD82. Активное содержимое в виде различных микроРНК, мРНК, цитокинов и факторов роста, клеточных мембранных рецепторов позволяет экзосомам выступать в роли эффекторов в межклеточной коммуникации и выполнять транспортную функцию.

В настоящей работе представлен анализ данных литературы о роли экзосомальной сигнализации в развитии основных кардиологических синдромов, а также перспективах использования экзосом в клинической практике.

Об авторах

С. П. Щава
Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Медицинский центр
Россия

Щава Сергей Петрович, к.м.н., сердечно-сосудистый хирург Центра кардиохирургии и сосудистой хирургии Медицинского центра ФГАОУ ВО ДВФУ; научный сотрудник Центральной научно-исследовательской лаборатории ФГБОУ ВО ТГМУ Минздрава России

п. Аякс, д. 10, о. Русский, г. Владивосток, 690922



Е. В. Степанов
Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Медицинский центр
Россия

Степанов Евгений Викторович, врач рентгенэндоваскулярных методов диагностики и лечения Центра кардиохирургии и сосудистой хирургии

о. Русский, Владивосток



В. А. Сорокин
Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет», Медицинский центр; Федеральное государственное бюджетное образовательное учреждение высшего образования «Тихоокеанский государственный медицинский университет» Министерства здравоохранения Российской Федерации
Россия

Сорокин Виталий Александрович, д.м.н., заведующий Центром кардиохирургии и сосудистой хирургии Медицинского центра ФГАОУ ВО ДВФУ; профессор Института хирургии ФГБОУ ВО ТГМУ Минздрава России

о. Русский, Владивосток



Список литературы

1. Biemmi V, Milano G, Ciullo A, et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4dependent NF-κB activation. Theranostics. 2020; 10 (6): 2773–2790.

2. Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019; 10 (1): 959.

3. Liang C, Zhang L, Lian X, et al. Circulating exosomal SOCS2-AS1 acts as a novel biomarker in predicting the diagnosis of coronary artery disease. Biomed Res Int. 2020: 9182091.

4. Su X, Jin Y, Shen Y, et al. Exosome-derived dystrophin from allograft myogenic progenitors improve cardiac function in Duchenne muscular dystrophic mice. J Cardiovasc Transl Res. 2018; 11 (5): 412–419.

5. Yang VK, Loughran KA, Meola DM, et al. Circulating exosome microRNA associated with heart failure secondary to myxomatous mitral valve disease in a naturally occurring canine model. J Extracell Vesicles. 2017; 6 (1): 1350088.

6. Sharma M, Liu W, Perincheri S, et al. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin. Am J Transplant. 2018; 18 (7): 1626–1635.

7. Yang C, Sun S, Zhang Q, et al. Exosomes of antler mesenchymal stem cells improve postoperative cognitive dysfunction in cardiopulmonary bypass rats through inhibiting the TLR2/TLR4 signaling pathway. Stem Cells Int. 2020: 2134565.

8. Kraemer S, Beckers C, Stoppe C, et al. Exosomes in cardiac preconditioning with isoflurane and hypoxia. Thorac Cardiovasc Surg. 2015; 63: ePP23.

9. Trams EG, Lauter CJ, Salem Jr N, et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981; 645 (1): 63–70.

10. Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985; 101 (3): 942–948.

11. Van der Pol E, Böing AN, Harrison P, et al. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012; 64 (3): 676–705.

12. Ibrahim A, Marban E. Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol. 2016; 78: 67–83.

13. Mentkowski KI, Snitzer JD, Rusnak S, et al. Therapeutic potential of engineered extracellular vesicles. AAPS J. 2018; 20 (3): 50.

14. Jan AT, Rahman S, Khan S, et al. Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal. Cells. 2019; 8 (2): 99.

15. Ottaviani L, Juni RP, Halkein J, et al. Cardiomyocyte-derived exosomes mediate pathological cardiac microvascular remodeling. J Mol Cell Cardiol. 2018; 120: 45.

16. Davidson SM, Riquelme JA, Zheng Y, et al. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning. Sci Rep. 2018; 8 (1): 15885.

17. Heo J, Yang HC, Rhee WJ, et al. Vascular smooth muscle cell-derived exosomal microRNAs regulate endothelial cell migration under PDGF stimulation. Cells. 2020; 9 (3): 639.

18. Yuan X, Wu Q, Wang P, et al. Exosomes derived from pericytes improve microcirculation and protect bloodspinal cord barrier after spinal cord injury in mice. Front Neurosci. 2019; 13: 319.

19. Han K-Y, Chang J-H, Azar DT. MMP14-containing exosomes cleave VEGFR1 and promote VEGFA-induced migration and proliferation of vascular endothelial cells. Invest Ophthalmol Vis Sci. 2019; 60 (6): 2321–2329.

20. Genschmer KR, Russell DW, Lal C, et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell. 2019; 176 (1–2): 113–126.

21. Ma J, Zhao Y, Sun L, et al. Exosomes derived from AKT-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017; 6 (1): 51–59.

22. Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol. 2018; 46 (8): 1659–1670.

23. Maring JA, Lodder K, Mol E, et al. Cardiac progenitor cell-derived extracellular vesicles reduce infarct size and associate with increased cardiovascular cell proliferation. J Cardiovasc Transl Res. 2019; 12 (1): 5–17.

24. Li S, Jiang J, Yang Z, et al. Cardiac progenitor cell-derived exosomes promote H9C2 cell growth via Akt/ mTOR activation. Int J Mol Med. 2018; 42 (3): 1517–1525.

25. Saha P, Sharma S, Korutla L, et al. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci Transl Med. 2019; 11 (493): eaau1168.

26. Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017; 66: 30–41.

27. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res. 2010; 51 (8): 2105–2120.

28. Koga Y, Yasunaga M, Moriya Y, et al. Exosome can prevent RNase from degrading microRNA in feces. J Gastrointest Oncol. 2011; 2 (4): 215–222.

29. Xu M-Y, Ye Z-S, Song X-T, et al. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review. Stem Cell Res Ther. 2019; 10 (1): 194.

30. Li Y, Yu S, Li L, et al. KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis. 2020; 11 (4): 299.

31. Wang X, Gu H, Huang W, et al. Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016; 65 (10): 3111–3128.

32. Atay S, Wilkey DW, Milhem M, et al. Insights into the proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential diagnostic biomarkers. Mol Cell Proteomics. 2018; 17 (3): 495–515.

33. Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D, et al. Proteomics study of human cord blood reticulocytederived exosomes. Sci Rep. 2018; 8 (1): 14046.

34. Miksa M, Wu R, Dong W, et al. Immature dendritic cell-derived exosomes rescue septic animals via milk fat globule epidermal growth factor-factor VIII. J Immunol. 2009; 183 (9): 5983–5990.

35. Batagov AO, Kurochkin IV. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3’-untranslated regions. Biol Direct. 2013; 8: 12.

36. Manterola L, Guruceaga E, Gallego Perez-Larraya J, et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 2014; 16 (4): 520–527.

37. Pérez-Boza J, Lion M, Struman I. Exploring the RNA landscape of endothelial exosomes. RNA. 2018; 24 (3): 423–435.

38. Kondratov K, Nikitin Y, Fedorov A, et al. Heterogeneity of the nucleic acid repertoire of plasma extracellular vesicles demonstrated using high-sensitivity fluorescence-activated sorting. J Extracell Vesicles. 2020; 9 (1): 1743139.

39. Mensa E, Guescini M, Giuliani A, et al. Small extracellular vesicles deliver miR-21 and miR-217 as prosenescence effectors to endothelial cells. J Extracell Vesic. 2020; 9 (1): 1725285.

40. Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014; 42 (2): 1135–1140.

41. Dai W, Su L, Lu H, et al. Exosomes-mediated synthetic Dicer substrates delivery for intracellular Dicer imaging detection. Biosens Bioelectron. 2020; 151: 111907.

42. Janas T, Janas T. The selection of aptamers specific for membrane targets. Cell Mol Biol Lett. 2011; 16 (1): 25–39.

43. Koyano K, Bahn JH, Xiao X. Extracellular microRNA 3’ end modification across diverse body fluids. bioRxiv. March 25, 2020.

44. Janas AM, Sapońc K, Janas T, et al. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochim Biophys Acta. 2016; 1858 (6): 1139–1151.

45. Bebelman MP, Bun P, Huveneers S, et al. Real-time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from single cells. Nat Protoc. 2020; 15 (1): 102–121.

46. Mittelbrunn M, Gutiérrez-Vázquez C, VillarroyaBeltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011; 2: 282.

47. Hoshino D, Kirkbride KC, Costello K, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013; 5 (5): 1159–1168.

48. Hyenne V, Apaydin A, Rodriguez D, et al. RAL1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015; 211 (1): 27–37.

49. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010; 464 (7290): 864–869.

50. Basma H, Johanson AN, Dhar K, et al. TGF-β induces a heart failure phenotype via fibroblasts exosome signaling. Heliyon. 2019; 5 (10): e02633.

51. Ortega FG, Roefs MT, de Miguel Perez D, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019; 20: 102014.

52. Wang L, Zhang J. Exosomal lncRNA AK139128 derived from hypoxic cardiomyocytes promotes apoptosis and inhibits cell proliferation in cardiac fibroblasts. Int J Nanomed. 2020; 15: 3363–3376.

53. Tian C, Gao L, Zimmerman MC, et al. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol. 2018; 314 (5): H928–H939.

54. Działo E, Rudnik M, Koning RI, et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int J Mol Sci. 2019; 20 (6): 1436.

55. Ju C, Shen Y, Ma G, et al. Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. J Cardiovasc Transl Res. 2018; 11 (5): 420–428.

56. Cheng Y, Wang X, Yang J, et al. A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol. 2012; 53 (5): 668–676.

57. Cheow ESH, Cheng WC, Lee CN, et al. Plasmaderived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016; 15 (8): 2628–2640.

58. Beltrami C, Besnier M, Shantikumar S, et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis. Mol Ther. 2017; 25 (3): 679–693.

59. Minghua W, Zhijian G, Chahua H, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis. 2018; 9 (3): 320.

60. Lin Y, Zhang C, Xiang P, et al. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Ves. 2020; 9 (1): 1722385.

61. Chen Q, Huang M, Wu J, et al. Exosomes isolated from the plasma of remote ischemic conditioning rats improved cardiac function and angiogenesis after myocardial infarction through targeting Hsp70. Aging (Albany NY). 2020; 12 (4): 3682–3693.

62. Li H, Liao Y, Gao L, et al. Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics. 2018; 8 (8): 20792093.

63. Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemiareperfusion injury. J Am Coll Cardiol. 2015; 65 (15): 15251536.

64. Cheng H, Chang S, Xu R, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate postinfarction cardiac apoptosis. Stem Cell Res Ther. 2020; 11 (1): 224.

65. He J-G, Li H-R, Han J-X, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep. 2018; 8 (1): 9047.

66. Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015; 117 (1): 52–64.

67. Zhang Z, Yang J, Yan W, et al. Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc. 2016; 5 (1): e002856.

68. Wang Y, Zhao R, Liu D, et al. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKII. Oxid Med Cell Longev. 2018: 4971261.

69. Weber A, Cardone L, Liu SS, et al. Evaluating of circulating exosomes to predict emerging valve prosthesispatient mismatches after surgical aortic valve replacement. Thorac Cardiovasc Surg. 2018; 66 (S 01): S1–S110.

70. Weber A, Liu SS, Cardone L, et al. The course of circulating small extracellular vesicles in patients undergoing surgical aortic valve replacement. Biomed Res Int. 2020: 6381396.

71. Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014; 103 (4): 530–541.

72. Chen Y-T, Wang J, Wee ASY, et al. Differential microRNA expression profile in myxomatous mitral valve prolapse and fibroelastic deficiency valves. Int J Mol Sci. 2016; 17 (5): 753.

73. Leitolis A, Suss PH, Roderjan JG, et al. Human heart explant-derived extracellular vesicles: characterization and effects on the in vitro recellularization of decellularized heart valves. Int J Mol Sci. 2019; 20 (6): 1279.

74. van Amerongen MJ, Engel FB. Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med. 2008; 12 (6A): 2233–2244.

75. LaFramboise WA, Scalise D, Stoodley P, et al. Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol. 2007; 292 (5): C1799C1808.

76. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014; 124 (5): 2136–2146.

77. Queirós AM, Eschen C, Fliegner D, et al. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int J Cardiol. 2013; 169 (5):331–338.

78. Yang J, Yu X, Xue F, et al. Exosomes derived from cardiomyocytes promote cardiac fibrosis via myocyte-fibroblast cross-talk. Am J Transl Res. 2018; 10 (12): 4350–4366.

79. Clive Landis R, Brown JR, Fitzgerald D, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: a critical review of the evidence base. J Extra Corpor Technol. 2014; 46 (3): 197–211.

80. Dekker NAM, van Leeuwen ALI, van Strien WWJ, et al. Microcirculatory perfusion disturbances following cardiac surgery with cardiopulmonary bypass are associated with in vitro endothelial hyperpermeability and increased angiopoietin-2 levels. Crit Care. 2019; 23 (1): 117.

81. Fujii Y. Evaluation of inflammation caused by cardiopulmonary bypass in a small animal model. Biology (Basel). 2020; 9 (4): 81.

82. Poon K-S, Palanisamy K, Chang S-S, et al. Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep. 2017; 7 (1): 10807.

83. Emanueli C, Shearn AIU, Laftah A, et al. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: an example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One. 2016; 11 (4): e0154274.

84. Baysa A, Fedorov A, Kondratov K, et al. Release of mitochondrial and nuclear DNA during on-pump heart surgery: kinetics and relation to extracellular vesicles. J Cardiovasc Transl Res. 2019; 12 (3): 184–192.

85. Wang M, Su P, Liu Y, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post-operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep. 2019; 20 (3): 2549–2562.

86. Gasecka A, van der Pol E, Coumans F, et al. Identification of extracellular vesicles as biomarkers for myocardial infarction by flow cytometry and automated data processing. J Extracell Vesicles. 2019; 8 (1): 1593587.

87. Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011; 4 (4): 446–454.

88. Hermann S, Buschmann D, Kirchner B, et al. Transcriptomic profiling of cell-free and vesicular microRNAs from matched arterial and venous sera. J Extracell Vesicles. 2019; 8 (1): 1670935.

89. Fitzsimons S, Oggerob S, Mahon N, et al. Urinary extracellular vesicle concentration, microRNA-155 expression and inflammatory surface marker expression are altered in patients with symptomatic coronary artery disease. J Extracell Vesicles. 2019; 8 (1): 1593587.

90. Kalani MYS, Alsop E, Meechoovet B, et al. Extracellular microRNAs in blood differentiate between ischaemic and haemorrhagic stroke subtypes. J Extracell Vesicles. 2020; 9 (1): 1713540.

91. Milano G, Biemmi V, Lazzarini E et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2020; 116 (2): 383–392.

92. Han C, Zhou J, Liang C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019; 7 (7): 2920–2933.

93. Huang P, Wang L, Li Q, et al. Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Res Ther. 2019; 10 (1): 300.

94. Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci Rep. 2019; 9 (1): 10041.

95. Kang J-Y, Park H, Kim H, et al. Human peripheral blood-derived exosomes for microRNA delivery. Int J Mol Med. 2019; 43 (6): 2319–2328.


Для цитирования:


Щава С.П., Степанов Е.В., Сорокин В.А. Роль экзосом в патогенезе сердечно-сосудистых заболеваний. Трансляционная медицина. 2020;7(5):17-28. https://doi.org/10.18705/2311-4495-2020-7-5-17-28

For citation:


Schava S.P., Stepanov E.V., Sorokin V.A. The exosomes role in pathogenesis of cardiovascular diseases. Translational Medicine. 2020;7(5):17-28. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-5-17-28

Просмотров: 70


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)