Fibrin scaffolds containing dental pulp stem cells for the repair of periodontal bone defects
https://doi.org/10.18705/2311-4495-2020-7-1-59-69
Abstract
Background. 3D scaffolds plays an important role in developing new approaches in modern dentistry. They are used to establish optimal conditions for cell differentiation, vascularization and remodeling of regenerating bone tissue.
Objective. Evaluation of the possibility of creating scaffolds developed on the basis of 3D modeling of periodontal bone defects and containing tooth pulp stem cells.
Materials and Methods. The computer tomography data of the maxillar bone tissue defect were analysed. Anatomical prototype — a mold representing defects of the vestibular and palatal fragments of bone tissue was created by 3D printing. This 3D form was filled with fibrin glue and dental pulp stem cells. The fibrin glue was prepared from autologous blood plasma and mixed with dental pulp stem cells.
Results. Fibrin glue prepared from an autologous plasma concentrate (fibrinogen 20 g/l) retains its shape for 4 days. On the day 5, the clot retraction became clearly visible and on the day 7, the clot diameter decreased to 50 % of the original size. The proliferation rate of cells, grown both inside the scaffold and in 2D conditions, did not differ. The immunophenotype of cells of both groups corresponded to the immunophenotype of mesenchy mal stromal cells. The mesenchymal immunophenotype is a feature of dental stem cells. Alizarin red staining of cells both grown on adhesive culture plastic and extracted from glue on day 10 after the induction of osteogenic differentiation did not differ.
Conclusion. The fibrin glue is a good material for creation a scaffold with suitable mechanical characteristics. The cells enclosed in the fibrin glue maintain their viability, immunophenotype and osteogenic potential. This technology can be used for bone tissue repair in dentistry and maxillofacial surgery.
About the Authors
Yu. A. DombrovskayaRussian Federation
Dombrovskaya Yuliya A., MD, PhD, Assistant Professor, Department of General Dentistry
Saint Petersburg
N. I. Enukashvily
Russian Federation
Enukashvily Natella I., PhD, Senior Researcher, Cell Technologies Laboratory; Head of Non-Coding DNA Laboratory
Kirochnaya str. 41, Saint Petersburg, Russia, 191015
A. V. Kotova
Russian Federation
Kotova Anastasiya V., Researcher, Cell Technologies Laboratory; Assistant, Non-coding DNA Laboratory
Saint Petersburg
S. S. Bilyk
Russian Federation
Bilyk Stanislav S., MD, Traumatologist, Researcher
Saint Petersburg
A. N. Kovalenko
Russian Federation
Kovalenko Anastasiya N., MD, PhD, Senior Researcher
Saint Petersburg
A. V. Silin
Russian Federation
Silin Aleksey V., Professor, Head of General Dentistry Department
Saint Petersburg
References
1. Nyberg EL, Farris AL, Hung BP et al. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration. Ann Biomed Eng. 2017;45(1):45–57.
2. Ivanov AN, Norkin IA, Puchin’ian DM. The possibilities and perspectives of using scaffold technology for bone regeneration. Tsitologiia. 2014;56(8):543–548. In Russian [Иванов А.Н., А.Н., Норкин И.А., Пучиньян Д.М. Возможности и перспективы использования скаффолд-технологий для регенерации костной ткани. Цито- логия. 2014. 56(8): 543–548].
3. Jaremenko AI, Galeckij DV, Korolov VO. Sovremennye osteoplasticheskie i osteoinduktivnye materialy. Sostojanie problemy. Perspektivy primenenija v stomatologii i cheljustno-licevoj hirurgii. Institut stomatologii=Institute of stomatology. 2011. 2(51):70–71. In Russian [Яременко А.И., Галецкий Д.В., Королов В.О. Современные остеопластические и остеоиндуктивные материалы. Состояние проблемы. Перспективы приме- нения в стоматологии и челюстно-лицевой хирургии. Институт стоматологии. 2011. 2(51):70–71].
4. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–2280.
5. Liu L, Wei X, Ling J, Wu L, Xiao L. Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod. 2011;37(4):466–472.
6. Atari M, Gil-Recio C, Fabregat M et al. Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci. 2012;125(Pt 14):3343–3356.
7. Martínez-Sarrà E, Montori S, Gil-Recio C et al. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Res Ther. 2017; 8(1):175–195.
8. Grimm WD, Dannan A, Giesenhagen B et al. Translational Research: Palatal-derived Ecto-mesenchymal Stem Cells from Human Palate: A New Hope for Alveolar Bone and Cranio-Facial Bone Reconstruction. Int J Stem Cells. 2014;7(1):23–29.
9. Uehara K, Zhao C, Gingery A et al. Effect of Fibrin Formulation on Initial Strength of Tendon Repair and Migration of Bone Marrow Stromal Cells in Vitro. J Bone Joint Surg Am. 2015; 97(21):1792–1798.
10. Enukashvily NI, Aizenshtadt AA, Bagaeva VV et al. Assessing the possibility to apply the fibrin glue made of cord blood plasma as a scaffold for mesenchymal stem cells transplantation. HERALD of North-Western State Medical University named after II Mechnikov. 2017: 9(2); 35–44. In Russian [Енукашвили Н.И., Айзенштадт А.А., Багаева В.В., и соавт. Оценка возможности применения фибринового клея на основе пуповинной крови в качестве скаффолда для мезенхимальных стволовых клеток. Вестник Санкт-Петербургской государственной медицинской академии им. И.И. Мечникова. 2017: 9(2); 35–44.]
11. Bagaeva VV, Ajzenshtadt AA, Savintsev AM et al. Method for obtaining of two-component preparation for treatment of joints damage by low-invasive introduction into joint bag and preparation obtained by this method. Patent of Russian Federation RU 2 638 796 C1. Bulletin FIPS=FIPS Bulletin. 2017. Issue35. In Russian [Багаева ВВ, Айзенштадт АА, Савинцев АМ. и др. Способ получения двух- компонентного препарата для лечения повреждения суставов путем малоинвазивного введения в суставную сумку и препарат, полученный этим способом Патент РФ. RU 2 638 796 C1. Бюлл ФИПС. 2017; Вып.35.]
12. Egorikhina MN, Aleynik DY, Rubtsova YP et al. Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioact Mater. 2019;4:334–345.
13. General pharmacopeia article «Requirements for cell cultures-substrates for the production of immunobiological drugs. OFS.1.7.2.0011.15» («State Pharmacopoeia of the Russian Federation. XIII edition. Volume II»). In Russian. [Общая фармакопейная статья «Требования к клеточным культурам-субстратам производства иммунобиологических лекарственных препаратов. ОФС.1.7.2.0011.15» («Государственная фармакопея Российской Федерации. XIII издание. Том II»)]
14. Supotnitskiy MV, Elapov AA, Merkulov VA, et al. Common technological processes used in manufacture of biomedical cell culture products. Biopreparaty=Biopharmaceut icals. 2015;(2):36–45. In Russian [Супотницкий МВ, Елапов АА, Меркулов ВА и соавт. Основные технологические процессы, используемые при производстве биомедицинских клеточных продуктов. Биопрепараты. 2015; (2): 36–45.]
15. Bagaeva VV, Enukashvili NI, Elsukova LV et al. Method for extracting a tooth pulp for receiving a culture of stem cells. Patent of Russian Federation 2017 143 739. Oficialny Bulletin FIPS=Official FIPS Bulletin. 2019. №4. In Russian [Багаева ВВ, Енукашвили НИ, Елсукова ЛВ. Способ извлечения пульпы зуба для получения культуры стволовых клеток. Патент РФ № 2679082. Официальный бюллетень ФИПС. 2019. №4.]
16. Elnager A, Abdullah WZ, Hassan R et al. In vitro whole blood clot lysis for fibrinolytic activity study using d-dimer and confocal microscopy. Adv Hematol. 2014; 2014:814684.
17. Bogdanova M, Kostina A, Zihlavnikova Enayati K et al. Inflammation and Mechanical Stress Stimulate Osteogenic Differentiation of Human Aortic Valve Interstitial Cells. Front Physiol. 2018;9:1635.
18. Salam N, Toumpaniari S, Gentile P et al. Assessment of Migration of Human MSCs through Fibrin Hydrogels as a Tool for Formulation Optimisation. Materials (Basel). 2018; 11(9): pii: E1781.
19. Khang G. Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine. Jenny Stanford Publishing. 2017. p 1440.
20. Park SA, Lee HJ, Kim KS et al. In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model. Materials (Basel). 2018; 11(2):E238.
21. Tao O, Kort-Mascort J, Lin Y et al. The Applications of 3D Printing for Craniofacial Tissue Engineering. Micromachines (Basel). 2019; 10(7): pii: E480.
22. Maroulakos M, Kamperos G, Tayebi L. et al. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent. 2019;80:1–14.
23. Kim I, Lee SK, Yoon JI et al. Fibrin glue improves the therapeutic effect of MSCs by sustaining survival and paracrine function. Tissue Eng Part A. 2013; 19(21–22):2373–2381.
24. Hedrich HC, Simunek M, Reisinger S et al. Fibrin chain cross-linking, fibrinolysis, and in vivo sealing efficacy of differently structured fibrin sealants. J Biomed Mater Res B Appl Biomater. 2012; 100(6):1507–1512.
25. Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003;31(10):890–896.
26. Wang Y, Huang J, Gong L et al. The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I. iScience. 2019; 15:66–78.
27. Iohara K, Utsunomiya S, Iohara S et al. Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration. Stem Cell Research & Therapy. 2018; 9(1):116–132.
28. Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés M et al. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent. 2019;11(4):e373–381.
29. Bujoli B, Scimeca JC, Verron E. Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics. 2019;11(11): pii: E556.
30. Zhang L, Wang P, Mei S et al. In vivo alveolar bone regeneration by bone marrow stem cells/fibrin glue composition. Arch Oral Biol. 2012; 57(3):238–244.
31. Buchta C, Hedrich HC, Macher M et al. Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel. Biomaterials. 2005; 26(31):6233–6241.
32. Harris DM, Siedentop KH, Ham KR, Sanchez B. Autologous fibrin tissue adhesive biodegration and systemic effects. Laryngoscope. 1987;97(10):1141–1144.
33. Shekhter AB, Guller AE, Istranov LP et al. Morphology of collagen matrices for tissue engineering (biocompatibility, biodegradation, tissue response). Arkh Patol. 2015;77(6):29–38. In Russian [Шехтер А.Б., Гуллер А.Е., Истранов Л.П., и соавт. Морфология коллагеновых матриксов для тканевой инженерии (биосовместимость, биодеградация, тканевая реакция). Архив патологии. 2015;77(6):29–38.]
34. Volf GF. Parodontology: atlas. 2nd ed. M.: Medpress-inform, 2014. p. 548 In Russian. [Вольф Г.Ф. Па- родонтология: цветной атлас. Пособие. 2-е изд. Москва: МЕДпресс-информ, 2014. c. 548].
Review
For citations:
Dombrovskaya Yu.A., Enukashvily N.I., Kotova A.V., Bilyk S.S., Kovalenko A.N., Silin A.V. Fibrin scaffolds containing dental pulp stem cells for the repair of periodontal bone defects. Translational Medicine. 2020;7(1):59-69. (In Russ.) https://doi.org/10.18705/2311-4495-2020-7-1-59-69