Possible Mechanisms for Normalization of the Level of Arterial Pressure with Unilateral Vasorenal Hypertension
https://doi.org/10.18705/2311-4495-2019-6-2-46-55
Abstract
The purpose of the study is on the model of vasorenal hypertension (2 kidney, 1 clamp) to study the dynamics of heart rate variability (HRV) spectrum components depending on stability of hypertension, developed after renal artery clamping. Experiments were put on Wistar male rats. During experiments in awake animals conducted registration systolic blood pressure (SBP), beat-to-beat interval (RR), spectral analysis of HRV. 1-3 weeks after the clipping of the renal artery, an elevation of MAP was observed in 21 of 33 rats. However, by week 8 of observations, the level of SBP was normalized in 11 animals. Analysis of the parameters studied in animals in which, after applying a clamp to the renal artery, an unstable elevation in the SBP was registered, showed a decrease in the high-frequency component (HF) of the HRV spectrum with an increase in the SBP. Normalization of SBP occurred within 1-5 weeks and was accompanied by restoration of HF and an increase in the length of RR. It was concluded that with unilateral ischemia of the kidneys, including mechanisms that positively affect the tone of the vagus, which counteracts the rise in blood pressure and promotes the normalization of its level, are activated.
About the Authors
M. G. PlissRussian Federation
Pliss Mikhail G. - MD, PhD, Head of the Department for Experimental Physiology and Pharmacology, Almazov NMRC; Head of the Laboratory of Byophysics of Blood Circulation, Pavlov FSPSMU.
Saint Petersburg
Competing Interests:
No conflict of interest
N. V. Kuzmenko
Russian Federation
Kuzmenko Nataliya V. - PhD, Senior Researcher of the Department for Experimental Physiology and Pharmacology, Almazov NMRC; Senior Researcher of the Laboratory of Byophysics of Blood Circulation, Pavlov FSPSMU.
Parkhomenko Str., 15 b, Saint Petersburg, 194156
Competing Interests:
No conflict of interest
V. A. Tsyrlin
Russian Federation
Tsyrlin Vitaliy A. - MD, PhD, Dr. Sc., Professor, Leading Researcher of the Department of Experimental Physiology and Pharmacology, Almazov NMRC; Professor of the Department for Pharmacology, Pavlov FSPSMU.
Saint Petersburg
Competing Interests:
No conflict of interest
References
1. Safian RD, Textor SC. Renal-Artery Stenosis. N Engl J Med. 2001;344(6):431-442.
2. Olin JW. Renal Artery Disease: Diagnosis and Management. Mt Sinai J Med. 2004;71(2):73-85.
3. Griol-Charhbili V, Sabbah L, Colucci J et al. Tissue Kallikrein Deficiency and Renovascular Hypertension in the Mouse. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):R1385-R1391.
4. Tsyrlin VA, Kuzmenko NV, Pliss MG. Baroreceptor Reflex Role in Blood Pressure Long-Term Regulation. Arterial’naya Gipertenziya=Arterial Hypertension. 2009;15(6):679-682.
5. Demerath T, Staffel J, Schreiber A et al. Natriuretic Peptides Buffer Renin-Dependent Hypertension. Am J Physiol Renal Physiol. 2014;306(12):F1489-F1498.
6. Van Twist DJ, Houben AJ, De Haan MW et al. Angiotensin-(1-7)-Induced Renal Vasodilation is Reduced in Human Kidneys with Renal Artery Stenosis. J Hypertens. 2014;32(12):2428-2432.
7. Ohnishi A, Li P, Branch RA et al. Adenosine in Renin-Dependent Renovascular Hypertension. Hypertension. 1988;12(2):152-161.
8. Vacek L, Braveny P, Drapelova L. The Effect of Prostaglandins E2 and F2 Alpha on Carotid Blood Flow in Rats with Renovascular Hypertension. Physiol Bohemoslov. 1989;38(6):481-487.
9. Bianciotti LG, de Bold AJ. Modulation of Cardiac Natriuretic Peptide Gene Expression Following Endothelin Type A Receptor Blockade in Renovascular Hypertension. Cardiovasc Res. 2001;49(4):808-816.
10. Woods RL. Cardioprotective Functions of Atrial Natriuretic Peptide and B-type Natriuretic Peptide: A Brief Review. Clin Exp Pharmacol Physiol. 2004;31(11):791-794.
11. Cunha TM, Lima WG, Silva ME et al. The Nonpeptide ANG-(1-7) Mimic AVE 0991 Attenuates Cardiac Remodeling and Improves Baroreflex Sensitivity in Renovascular Hypertensive Rats. Life Sci. 2013;92(4-5):266-275.
12. Garcia-Espinosa MA, Shaltout HA, Gallagher PE et al. In Vivo Expression of Angiotensin-(1-7) Lowers Blood Pressure and Improves Baroreflex Function in Transgenic (mRen2)27 Rats. J Cardiovasc Pharmacol. 2012;60(2):150-157.
13. Pelleg A, Mitsuoka T, Mazgalev T et al. Vagal Component in the Chronotropic and Dromotropic Actions of Adenosine and ATP. Prog Clin Biol Res. 1987;230:375-384.
14. Chapleau MW, Hajduczok G, Abboud FM. Paracrine Role of Prostanoids in Activation of Arterial Baroreceptors: An Overview. Clin Exp Hypertens. 1991;13(5):817-824.
15. Chen HI, Chapleau MW, McDowell TS et al. Prostaglandins Contribute to Activation of Baroreceptors in Rabbits. Possible Paracrine Influence of Endothelium. Circ Res. 1990;67(6):1394-1404.
16. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 1996;93(5):1043-1065.
17. Zimmerman JB, Robertson D, Jackson EK. Angiotensin II-Noradrenergic Interactions in Renovascular Hypertensive Rats. J Clin Invest. 1987;80(2):443-457.
18. Martinez-Maldonado M. Pathophysiology of Renovascular Hypertension. Hypertension. 1991;17(5):707-719.
19. Kosch M, Hausberg M, Barenbrock M et al. Studies on Cardiac Sympathovagal Balance and Large Artery Distensibility in Patients with Untreated Essential Hypertension. J Hum Hypertens. 1999;13(5):315-319.
20. Friberg P, Karlsson B, Nordlander M. Autonomic Control of the Diurnal Variation in Arterial Blood Pressure and Heart Rate in Spontaneously Hypertensive and Wistar-Kyoto Rats. J Hypertens. 1989;7(10):799-807.
21. Souza HC, Martins-Pinge MC, Dias da Silva VJ et al. Heart Rate and Arterial Pressure Variability in the Experimental Renovascular Hypertension Model in Rats. Auton Neurosci. 2008;139(1-2):38-45.
22. Golubeva GYu, Golubev YuYu, Melentyev AS. Comparative Analysis of Heart Rate Variability in Patients with a Complicated and Uncomplicated arterial hypertension. Vestnik Rossijskogo Gosudarstvennogo Medicinskogo Universiteta=Bulletin Of The Russian State Medical University. 2012;6:5-8. In Russian.
23. Oliveira-Sales EB, Toward MA, Campos RR et al. Revealing the Role of the Autonomic Nervous System in the Development and Maintenance of Goldblatt Hypertension in Rats. Auton Neurosci. 2014;183:23-29.
24. Kuzmenko NV, Shcherbin YI, Pliss MG et al. Changes of the Sympathetic Activity in the Heart and Vessels in the Development of Experimental Vasorenal Hypertension (2 Kidneys -1 Clip). Arterial’naya Gipertenziya=Arterial Hypertension. 2014;20(6):515-521.
25. Zhu GQ, Xu Y, Zhou LM et al. Enhanced Cardiac Sympathetic Afferent Reflex Involved in Sympathetic Overactivity in Renovascular Hypertensive Rats. Exp Physiol. 2009;94(7):785-94.
26. Zhu X, Zhou Z, Zhang Q et al. Vaccarin Administration Ameliorates Hypertension and Cardiovascular Remodeling in Renovascular Hypertensive Rats. J Cell Biochem. 2018;119(1):926-937.
27. Kuzmenko NV, Knyazeva AA, Golovkin AS et al. To the Analysis of Possible Mechanisms of Unilateral Vasorenal Hypertension Development. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova=Russian physiological journal I. M. Sechenov. 2017; 103 (12): 1377-1394.
28. Pliss MG, Kuzmenko NV, Knyazeva AA et al. Effect of the Quality of Laboratory Rats on the Dynamics of Parameters in the Development of Vasorenal Hypertension in the “2 Kidneys, 1 Clamp” Model. Translyacionnaya medicina=Translational Medicine. 2018;5(5):53-61.
29. Fatisson J, Oswald V, Lalonde F. Influence Diagram of Physiological and Environmental Factors Affecting Heart Rate Variability: An Extended Literature Overview. Heart Int. 2016;11(1):e32-e40.
30. Nystrom HC, Jia J, Johansson M et al. Neurohormonal Influences on maintenance and reversal of two-kidney one-clip renal hypertension. Acta Physiol Scand. 2002;175(3):245-251.
31. Polson JW, Dampney RA, Boscan P et al. Differential Baroreflex Control of Sympathetic Drive by Angiotensin II in the Nucleus Tractus Solitarii. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R1954-R1960.
32. Yao F, Sumners C, O'Rourke ST et al. Angiotensin II Increases GABAB Receptor Expression in Nucleus Tractus Solitarii of Rats. Am J Physiol Heart Circ Physiol. 2008;294(6):H2712-H2720.
33. Gao S, Park BM, Cha SA et al. Oxidative Stress Increases the Risk of Pancreatic p Cell Damage in Chronic Renal Hypertensive Rats. Physiol Rep. 2016;4(16). pii:e12900.
34. Saliba Y, Chouery E, Megarbane A et al. Microalbuminuria Versus Brain Natriuretic Peptide in Cardiac Hypertrophy of Hypertensive Rats. Physiol Res. 2010;59(6):871-880.
35. Galkina MV, Baskina OS, Bugrova ML. The Study of Synthesis, Accumulation and Release Processes of Atrial and Brain Natriuretic Peptides in Experimental Renovascular Hypertension. Sovremennye tekhnologii v medicine=Modern technologies in medicine. 2015;7(2):33-40.
Review
For citations:
Pliss M.G., Kuzmenko N.V., Tsyrlin V.A. Possible Mechanisms for Normalization of the Level of Arterial Pressure with Unilateral Vasorenal Hypertension. Translational Medicine. 2019;6(2):46-55. (In Russ.) https://doi.org/10.18705/2311-4495-2019-6-2-46-55