MODERN TECHNOLOGIES OF NUCLEAR MEDICINE IN DIAGNOSIS OF BRAIN TUMORS (LITERATURE REVIEW)
https://doi.org/10.18705/2311-4495-2018-5-5-37-45
Abstract
The review presents an analysis of the literature on the diagnosis of brain tumors and the study of their structural and biological features based on application of nuclear imaging: single photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiopharmaceuticals (RPHs), especially amino acids (11C-L-methionine and 18F-FET). It is shown PET-CT and SPECT allow to noninvasively study the most important biochemical processes underlying the oncogenesis. The obtained data can be crucial for an early detection of tumor lesion, staging the pathological process, personalization of treatment, evaluation of the efficiency of therapy and prognosis of the oncologic disease outcome.
About the Authors
N. A. KostenikovRussian Federation
Competing Interests: Конфликт интересов не заявляется
A. V. Pozdnyakov
Russian Federation
Competing Interests: Конфликт интересов не заявляется
A. A. Stanzhevskiy
Russian Federation
Competing Interests: Конфликты интересов не заявлены
A. A. Mihetko
Competing Interests: Конфликт интересов не завявлется
Yu. R. Iliuschenko
Russian Federation
References
1. Rasmussen B.K, Hansen S., Laursen RJ, et al. Epidemiology of glioma: clinical characteristics, symptoms, and predictors of glioma patients grade I-IV in the the Danish Neuro-Oncology Registry. J Neurooncol. 2017 Dec;135(3):571-579. doi: 10.1007/s11060-017-2607-5. Epub 2017 Aug 31.
2. Tabouret E1, Bauchet L, Carpentier AF. Brain metastases epidemiology and biology. Bull Cancer. 2013 Jan 1;100(1):57-62. doi: 10.1684/bdc.2012.1681.
3. de Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro Oncol. 2015 Jun;17(6):776-83. doi: 10.1093/neuonc/nou283. Epub 2014 Oct 13.
4. Inubushi M, Tatsumi M, Yamamoto Y, et al. European research trends in nuclear medicine. Ann Nucl Med. 2018 Nov;32(9):579-582. doi: 10.1007/s12149-018-1303-7. Epub 2018 Sep 21. Review
5. Granov А., Tiutin L., Schwartz T., editors Positron Emission Tomography: «Springer-Verlag», Heideberg, Berlin; 2013.
6. Mabray MC, Barajas RF Jr, Cha S Modern brain tumor imaging. Brain Tumor Res Treat. 2015 Apr;3(1):8-23. doi: 10.14791/btrt.2015.3.1.8. Epub 2015 Apr 29.
7. Livieratos L. Technical pitfalls and limitations of SPECT/CT Semin Nucl Med. 2015 Nov;45(6):530-40. doi: 10.1053/j.semnuclmed.2015.06.002.
8. Murari SB, Manthri RG, Gadepalli T, et al. Comparison of 99M Technetium Sestamibi Brain Single Photon Emission Computed Tomography (SPECT) with Computed Tomography (CT) & Magnetic Resonance Imaging (MRI) in Differentiating Tumor Recurrence From Radiation Necrosis in Post Therapeutic Gliomas. IJSR 2016 Sep.; 5 (9): 975-979.
9. Cecchin D1, Chondrogiannis S, Della Puppa A, et al. Presurgical 99mTc-sestamibi brain SPET/CT versus SPET: a comparison with MRI and histological data in 33 patients with brain tumours. Nucl Med Commun. 2009 Sep;30(9):660-8. doi: 10.1097/MNM.0b013e32832ea9b7 10.
10. Shibata Y1, Yamamoto T, Takano S, et al. Direct comparison of thallium-201 and technetium-99m MIBI SPECT of a glioma by receiver operating characteristic analysis. J Clin Neurosci. 2009 Feb;16(2):264-9. doi: 10.1016/j.jocn.2008.04.010. Epub 2008 Dec 11.
11. Woesler B, Kuwert T, Morgenroth C, et al. Non-invasive grading of primary brain tumours: Results of a comparative study between SPET with123I-α-methyl tyrosine and PET with18F-deoxyglucose Eur J Nucl Med.-1997.-Vol. 24, N 4.-P. 428-34.
12. Kuczer D, Feussner A, Wurm R, et al. 123I-IMT SPECT for evaluation of the response to radiation therapy in high-grade gliomas: a feasibility study. Br J Radiol. 2007 Apr;80(952):274-8. Epub 2006 Nov 22.
13. Vander Borght T, Asenbaum S, Bartenstein P, et al. EANM Procedure Guidelines for Brain Tumour Imaging using Labelled Amino Acid Analogues // Eur J Nucl Med Mol Imaging. 2006 Nov;33(11):1374-80.
14. Grosu AL, Feldmann H, Dick S, et al. Implications of IMT-SPECT for postoperative radiotherapy planning in patients with gliomas. Int J Radiat Oncol Biol Phys. 2002 Nov 1;54(3):842-54.
15. Samnick S1, Hellwig D, Bader JB, et al. Initial evaluation of the feasibility of single photon emission tomography with p-[123I]iodo-L-phenylalanine for routine brain tumour imaging. Nucl Med Commun. 2002 Feb;23(2):121-30.
16. Amin A, Moustafa H, Ahmed E, El-Toukhy M. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1 H-MRS): initial results. J Neurooncol. 2012 Feb;106(3):579-87. doi: 10.1007/s11060-011-0694-2. Epub 2011 Sep 13.
17. Sehweil AM, McKillop JH, Milroy R et al.. Mechanism of 201Tl uptake in tumours. Eur J Nucl Med. 1989;15(7):376-9.
18. Sun D1, Liu Q, Liu W, Hu W Clinical application of 201Tl SPECT imaging of brain tumors. J Nucl Med. 2000 Jan;41(1):5-10.
19. Matsunaga S1, Shuto T, Takase H, et al. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors. Int J Radiat Oncol Biol Phys. 2013 Jan 1;85(1):47-52. doi: 10.1016/j.ijrobp.2012.03.008. Epub 2012 Apr 27.
20. Skuridin VS, Stasyuk ES., Ilyina EA, et al. Obtaining Technetium-99m-Labeled Glucose Derivatives. Advanced Materials Research 2015;1084: 567-571.
21. Ono Y, Chernov MF, Muragaki Y, et al. Imaging of Intracranial Gliomas. Prog Neurol Surg. 2018;30:12-62. doi: 10.1159/000464376. Epub 2017 Dec 14. Review.
22. Vallabhajosula S. Molecular Imaging. Radiopharmaceuticals for PET and SPECT. // Springer, 2012. – NY, USA. – 370 p.
23. Larsson EM, Wikström J. Overview of neuroradiology. Handb Clin Neurol. 2017;145:579-599. doi: 10.1016/B978-0-12-802395-2.00037-7. Review.
24. Herzog H, Van Den Hoff J. Combined PET/MR systems: an overview and comparison of currently available options Q J Nucl Med Mol Imaging. 2012 Jun;56(3):247-67.
25. Palanichamy K, Chakravarti A. Diagnostic and Prognostic Significance of Methionine Uptake and Methionine Positron Emission Tomography Imaging in Gliomas. Front Oncol. 2017 Nov 1;7:257. doi: 10.3389/fonc.2017.0025726.
26. Dandois V1, Rommel D, Renard L, et al.. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J Neuroradiol. 2010 May;37(2):89-97. doi: 10.1016/j.neurad.2009.04.005. Epub 2009 Jun 30.
27. Sharma S. PET Radiopharmaceuticals for Personalized Medicine. Curr Drug Targets. 2016;17(16):1894-1907. Review.
28. Ullrich RT1, Kracht L, Brunn A, et al. Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma J Nucl Med. 2009 Dec;50(12):1962-8. doi: 10.2967/jnumed.109.065904. Epub 2009 Nov 12. 29. 29. Grosu AL1, Weber WA, Riedel E,, et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):64-74.
29. Jansen NL, Suchorska B, Wenter V, et al. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med. 2014 Feb;55(2):198-203. doi: 10.2967/jnumed.113.122333. Epub 2013 Dec 30.
30. Jansen NL, Suchorska B, Wenter V, et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med. 2015 Jan;56(1):9-15. doi: 10.2967/jnumed.114.144675.
31. Albert NL, Winkelmann I, Suchorska B et al. Early static 18F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging. 2016 Jun;43(6):1105-14.
32. Langen KJ1, Hamacher K, Weckesser M, et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications Nucl Med Biol. 2006 Apr;33(3):287-94.
33. Dunet V1, Rossier C, Buck A, et al. Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med. 2012 Feb;53(2):207-14. doi: 10.2967/jnumed.111.096859.
34. Pöpperl G1, Kreth FW, Mehrkens JH, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007 Dec;34(12):1933-42. Epub 2007 Sep 1.
35. Harat M, Małkowski B, Makarewicz R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother Oncol. 2016 Aug;120(2):241-7. doi: 10.1016/j.radonc.2016.06.004. Epub 2016 Jul 1.
36. Galldiks N1, Langen KJ, Holy R., et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med. 2012 Jul;53(7):1048-57. doi: 10.2967/jnumed.111.098590. Epub 2012 May 29..
37. Demetriades AK, Almeida AC, Bhangoo RS, Barrington SF. Applications of positron emission tomography in neuro-oncology: a clinical approach. Surgeon. 2014 Jun;12(3):148-57. doi: 10.1016/j.surge.2013.12.001. Epub 2014 Mar 11. Review.
38. Fueger BJ1, Czernin J, Cloughesy T, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas J Nucl Med. 2010 Oct;51(10):1532-8. doi: 10.2967/jnumed.110.078592. Epub 2010 Sep 16.
39. Walter F1, Cloughesy T, Walter MA, et al. Impact of 3, 4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician's perspective //Journal of nuclear medicine. J Nucl Med. 2012 Mar;53(3):393-8. doi: 10.2967/jnumed.111.095711. Epub 2012 Feb 9.
40. Chen W1, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med. 2006 Jun;47(6):904-11.
41. Wardak M1, Schiepers C, Cloughesy TF, et al. 18 F-FLT and 18 F-FDOPA PET kinetics in recurrent brain tumors. Eur J Nucl Med Mol Imaging. 2014 Jun;41(6):1199-209. doi: 10.1007/s00259-013-2678-2. Epub 2014 Mar 7.
42. Yamamoto Y1, Ono Y, Aga F, et al. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012 Dec;53(12):1911-5. doi: 10.2967/jnumed.112.104729. Epub 2012 Oct 18.
43. Jonson SD, Welch MJ. Investigations into tumor accumulation and peroxisome proliferator activated receptor binding by F-18 and C-11 fatty acids Nucl Med Biol. 2002 Feb;29(2):211-6.
44. Lam WW, Ng DC, Wong WY, et al. Promising role of [18F] fluorocholine PET/CT vs [18F] fluorodeoxyglucose PET/CT in primary brain tumors—early experience. Clin Neurol Neurosurg. 2011 Feb;113(2):156-61. doi: 10.1016/j.clineuro.2010.09.012. Epub 2010 Oct 30.
45. Giovannini E, Lazzeri P, Milano A, et al. Clinical applications of choline PET/CT in brain tumors. Curr Pharm Des. 2015;21(1):121-7. Review.
Review
For citations:
Kostenikov N.A., Pozdnyakov A.V., Stanzhevskiy A.A., Mihetko A.A., Iliuschenko Yu.R. MODERN TECHNOLOGIES OF NUCLEAR MEDICINE IN DIAGNOSIS OF BRAIN TUMORS (LITERATURE REVIEW). Translational Medicine. 2018;5(5):37-45. (In Russ.) https://doi.org/10.18705/2311-4495-2018-5-5-37-45