Targeted delivery of antioxidants to the myocardium using nanoscale carriers: a modern approach to reducing ischemic-reperfusion injury
https://doi.org/10.18705/2311-4495-2025-12-4-352-372
EDN: LWVIOU
Abstract
Coronary heart disease remains one of the leading causes of death worldwide. Myocardial ischaemia-reperfusion injury, the underlying cause of сoronary heart disease, involves the excessive formation of reactive oxygen species, which leads to myocardial oxidative damage. The most logical way to combat excess ROS is to use antioxidants, which have been shown to be effective in experimental studies. However, appropriate targeting delivery methods are needed for the systemic use of antioxidant-based drugs in a clinical setting. This review discusses the mechanisms of ROS generation and action in cardiac сoronary heart disease, as well as the consequences of oxidative damage. The authors present the principles of targeted antioxidant delivery using both passive and active methods involving ligands that are specific to ischaemic tissue, such as targeted homing peptides. Analysis of the results of the various studies presented in this review shows that delivery using such specific ligands may increase the bioavailability of antioxidants and the cardioprotective efficacy of drugs based on them. In the future, the use of artificial intelligence to design high-affinity targeted peptides may open new possibilities for personalized therapy for coronary heart disease. Thus, the development of targeted drug delivery systems represents one of the most promising strategies for improving the effectiveness of treatment for myocardial ischemia-reperfusion injury.
Keywords
About the Authors
Yu. V. CheburkinRussian Federation
Yuri V. Cheburkin, MD, PhD, Head of the Research Laboratory of Infectious Pathogens and Biomolecular Nanostructures
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
E. A. Smirnov
Russian Federation
Evgeny A. Smirnov, Junior Researcher of the Research Laboratory of Infectious Pathogens and Biomolecular Nanostructures; Postgraduate Student
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
E. A. Murashko
Russian Federation
Ekaterina A. Murashko, PhD, Head of the Research Laboratory of Metabolomic and Metabolic Profiling; Assistant of the Department of Chemistry, Institute of Medical Education
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
D. V. Korolev
Russian Federation
Dmitry V. Korolev, DSc, Associate Professor, Head of the Research Laboratory of Nanotechnologies; Researcher of the Laboratory of Circulatory Biophysics, Institute of Cardiovascular Diseases
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
A. A. Kolobov
Russian Federation
Alexey A. Kolobov, PhD of Biological Sciences, Leading Researcher of the Laboratory of Peptide Chemistry
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
D. Yu. Butko
Russian Federation
Dmitry Yu. Butko, MD, DSc, Professor, Head of the Department of Medical Rehabilitation and Sports Medicine
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
N. O. Sitkov
Russian Federation
Nikita O. Sitkov, PhD, Leading Researcher of the Research Laboratory of Infectious Pathogens and Biomolecular Nanostructures; Associate Professor of the Department of Micro- and Nanoelectronics
Saint Petersburg
Competing Interests:
The authors declare no conflict of interest.
Mi. M. Galagudza
Russian Federation
Mikhail M. Galagudza, MD, DSc, Corresponding Member of the Russian Academy of Sciences, Director of the Institute of Experimental Medicine and Head of the Department of Pathological Physiology, Institute of Medical Education; Principal Researcher
Parkhomenko str., 15, Lit. B, Saint Petersburg, 194156
Competing Interests:
The authors declare no conflict of interest.
References
1. Shalnova SA, Drapkina OM, Kutsenko VA, et al. Myocardial infarction in the population of some Russian regions and its prognostic value. Russian Journal of Cardiology. 2022;27(6):4952. (In Russ.) https://doi.org/10.15829/1560-4071-2022-4952
2. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–619. https://doi.org/10.1161/HHF.0b013e318291329a
3. Shlyakhto EV, Petrishchev NN, Galagudza MM, et al. Cardioprotection: fundamental and clinical aspects. SPb.: NP-Print; 2013. 399 p. (In Russ.)
4. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17(1):3–8. https://doi.org/10.1023/a:1027374931887
5. Petrishev NN, Shlyakhto EV, Tsyrlin VA, et al. The role of oxygen free radicals in the mechanisms of local and distant ischemic preconditioning of the myocardium. Bulletin of the Russian Academy of Medical Sciences. 2006;8:10–15. (In Russ.)
6. Barsukov AV. Cardioprotective significance of phosphodiesterase-5 inhibitors: from pathophysiology to real clinical practice. Klinicheskaya Patofiziologiya. 2018; 24(3):3–13. (In Russ.)
7. Smirnov VV, Beeraka NM, Butko DY, et al. Updates on molecular targets and epigenetic-based therapies for PCOS. Reprod Sci. 2023;30(3):772–786. https://doi.org/10.1007/s43032-022-01013-x
8. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol. 1973;5(4):395–407. https://doi.org/10.1016/0022-2828(73)90030-8
9. Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg. 1982;83(6):830–839.
10. Stewart JR, Blackwell WH, Crute SL, et al. Inhibition of surgically induced ischemia/reperfusion injury by oxygen free radical scavengers. J Thorac Cardiovasc Surg. 1983;86(2):262–272.
11. Burton KP, McCord JM, Ghai G. Myocardial alterations due to free-radical generation. Am J Physiol. 1984;246(6):776–783. https://doi.org/10.1152/ajpheart.1984.246.6.H776
12. Ytrehus K, Myklebust R, Mjøs OD. Influence of oxygen radicals generated by xanthine oxidase in the isolated perfused rat heart. Cardiovasc Res. 1986;20(8):597–603. https://doi.org/10.1093/cvr/20.8.597
13. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium.Proc Natl Acad Sci U.S.A. 1987;84(5):1404– 1407. https://doi.org/10.1073/pnas.84.5.1404
14. Bolli R, Jeroudi MO, Patel BS, et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U.S.A. 1989;86(12):4695–4699. https://doi.org/10.1073/pnas.86.12.4695
15. Martins D, Bakas I, McIntosh K, English AM. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein. Free Radic Biol Med. 2015;85:138–147. https://doi.org/10.1016/j.freeradbiomed.2015.04.010
16. Zhu X, Zuo L. Characterization of oxygen radical formation mechanism at early cardiac ischemia. Cell Death Dis. 2013;4(9):e787. https://doi.org/10.1038/cddis.2013.313
17. Spinelli JB, Rosen PC, Sprenger HG, et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science. 2021;374(6572):1227–1237. https://doi.org/10.1126/science.abi7495
18. Kohlhauer M, Dawkins S, Costa ASH, et al. Metabolomic profiling in acute st-segment-elevation myocardial infarction identifies succinate as an early marker of human ischemia-reperfusion injury. J Am Heart Assoc. 2018;7(8):e007546. https://doi.org/10.1161/JAHA.117.007546
19. Prag HA, Murphy MP, Krieg T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol. 2023;118(1):34. https://doi.org/10.1007/s00395-023-01002-4
20. Chouchani ET, Pell VR, James AM, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 2016;23(2):254– 263. https://doi.org/10.1016/j.cmet.2015.12.009
21. Fukushima CT, Dancil IS, Clary H, et al. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions. Redox Biol. 2024;70:103047. https://doi.org/10.1016/j.redox.2024.103047
22. Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133(2):230–255. https://doi.org/10.1016/j.pharmthera.2011.11.004
23. Arslan F, Smeets MB, O’Neill LA, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation. 2010;121(1):80–90. https://doi.org/10.1161/CIRCULATIONAHA.109.880187
24. Ge Y, Ma E, Guo X, et al. Baicalin prevents chronic β-AR agonist-induced heart failure via preventing oxidative stress and overactivation of the NADPH oxidase NOX2. J Cell Mol Med. 2025;29(4):e70388. https://doi.org/10.1111/jcmm.70388
25. Mondragon RR, Wang S, Stevenson MD, et al. NOX 4-driven mitochondrial oxidative stress in aging promotes myocardial remodeling and increases susceptibility to ventricular tachyarrhythmia. Free Radic Biol Med. 2025;235:294–305. https://doi.org/10.1016/j.freeradbiomed.2025.04.046
26. Matsushima S, Sadoshima J. Yin and yang of NADPH oxidases in myocardial ischemia-reperfusion. Antioxidants. 2022;11(6):1069. https://doi.org/10.3390/antiox11061069
27. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416(6878):337–339. https://doi.org/10.1038/416337a
28. Lu XM, Zhao H, Zhang HP. Role of neuronal nitric oxide synthase in the cardiac ischemia reperfusion in mice. Chin J Physiol. 2013;56(5):291–297. https://doi.org/10.4077/CJP.2013.BAB143
29. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem. 2004;279(17):16939– 16946. https://doi.org/10.1074/jbc.M314336200
30. Paraskevaidis IA, Iliodromitis EK, Vlahakos D, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J. 2005;26(3):263–270. https://doi.org/10.1093/eurheartj/ehi028
31. Galiñanes M, Ferrari R, Qiu Y, et al. PEG-SOD and myocardial antioxidant status during ischaemia and reperfusion: dose-response studies in the isolated blood perfused rabbit heart. J Mol Cell Cardiol. 1992;24(9):1021– 1030. https://doi.org/10.1016/0022-2828(92)91868-6
32. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47(3):446–456. https://doi.org/10.1016/s0008-6363(00)00078-x
33. Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med. 2024;210:158– 171. https://doi.org/10.1016/j.freeradbiomed.2023.11.013
34. Mata A, Cadenas S. The antioxidant transcription factor Nrf2 in cardiac ischemia-reperfusion injury. Int J Mol Sci. 2021;22(21):11939. https://doi.org/10.3390/ijms222111939
35. Haramaki N, Stewart DB, Aggarwal S, et al. Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion. Free Radic Biol Med. 1998;25(3):329–339. https://doi.org/10.1016/s0891-5849(98)00066-5
36. Iqbal K, Rauoof MA, Mir MM, et al. Lipid peroxidation during acute coronary syndromes and its intensification at the time of myocardial ischemia reperfusion. Am J Cardiol. 2002;89(3):334–337. https://doi.org/10.1016/s0002-9149(01)02237-8
37. Viappiani S, Nicolescu AC, Holt A, et al. Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol. 2009;77(5):826–834. https://doi.org/10.1016/j.bcp.2008.11.004
38. Galagudza MM. Stunned myocardium: mechanisms and clinical significance. Bulletin of VA Almazov Centre. 2011;2:5–11. (In Russ.)
39. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol. 2018;315(5):1341–1352. https://doi.org/10.1152/ajpheart.00028.2018
40. Murphy E, Eisner DA. How does mitochondrial Ca2+ change during ischemia and reperfusion? Implications for activation of the permeability transition pore. J Gen Physiol. 2025;157(1):13520. https://doi.org/10.1085/jgp.202313520
41. Bernardi P, Gerle C, Halestrap AP, et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023;30(8):1869– 1885. https://doi.org/10.1038/s41418-023-01187-0
42. Mendoza A, Patel P, Robichaux D, et al. Inhibition of the mPTP and lipid peroxidation is additively protective against I/R Injury. Circ Res. 2024;134(10):1292–1305. https://doi.org/10.1161/CIRCRESAHA.123.323882
43. Chen X, Tian PC, Wang K, et al. Pyroptosis: role and mechanisms in cardiovascular disease. Front Cardiovasc Med. 2022;9:897815. https://doi.org/10.3389/fcvm.2022.897815
44. Hamilton KL. Antioxidants and cardioprotection. Med Sci Sports Exerc. 2007;39(9):1544–1553. https://doi.org/10.1249/mss.0b013e3180d099e8
45. Pell VR, Chouchani ET, Murphy MP, et al. Moving forwards by blocking back-flow: the yin and yang of MI therapy. Circ Res. 2016;118(5):898–906. https://doi.org/10.1161/CIRCRESAHA.115.306569
46. Vaulina DD, Butko DYu, Karpov AA, Galagudza MM. Neurogenic regulation of cerebral blood flow. Russian Physiological Journal named after IM Sechenov. 2023;109(12):1725–1741. (In Russ.)
47. Kalinin AV, Butko DYu, Danilenko LA, et al. Assessment of heart rate variability in the practice of sports medicine: textbook. SPb.: SPbGPMU; 2023. P. 36. (In Russ.)
48. Grishaev SL, Dmitriev GV, Eliseev DN, et al. Assessment of myocardial perfusion changes (according to single-photon emission computed tomography of the heart) against the background of basic therapy of ischemic heart disease in comparison with clinical data. Bulletin of the NI Pirogov National Medical and Surgical Center. 2012;7(2):97–102. (In Russ.)
49. Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid Med Cell Longev. 2016;2016(1):1656450. https://doi.org/10.1155/2016/1656450
50. Luo Q, Sun W, Li Z, et al. Biomaterials-mediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368
51. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12):6387–6392.
52. Verma DD, Hartner WC, Thakkar V, et al. Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res. 2007;24(11):2131–2137. https://doi.org/10.1007/s11095-007-9334-0
53. Bae S, Park M, Kang C, et al. Hydrogen peroxideresponsive nanoparticle reduces myocardial ischemia/ reperfusion injury. J Am Heart Assoc. 2016;5(11):e003697. https://doi.org/10.1161/JAHA.116.003697
54. Asanuma H, Sanada S, Yoshitomi T, et al. Novel synthesized radical-containing nanoparticles limit infarct size following ischemia and reperfusion in canine hearts. Cardiovasc Drugs Ther. 2017;31(5–6):501–510. https://doi.org/10.1007/s10557-017-6758-6
55. Tian A, Yang C, Zhu B, et al. Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Can J Physiol Pharmacol. 2018;96(12):1318– 1327. https://doi.org/10.1139/cjpp-2018-0227
56. Li L, Wang Y, Guo R, et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. J Control Release. 2020;317:259–272. https://doi.org/10.1016/j.jconrel.2019.11.032
57. Shilo M, Oved H, Wertheim L, et al. Injectable nanocomposite implants reduce ROS accumulation and improve heart function after infarction. Adv Sci. 2021;8(24):e2 102919. https://doi.org/10.1002/advs.202102919
58. Ai W, Bae S, Ke Q, et al. Bilirubin nanoparticles protect against cardiac ischemia/reperfusion injury in mice. J Am Heart Assoc. 2021;10(20):e021212. https://doi.org/10.1161/JAHA.121.021212
59. Liu CJ, Yao L, Hu YM, Zhao BT. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine. 2021;16:741–752. https://doi.org/10.2147/IJN.S277377
60. Altshuler PJ, Schiazza AR, Luo L, et al. Superoxide dismutase-loaded nanoparticles attenuate myocardial ischemia-reperfusion injury and protect against chronic adverse ventricular remodeling. Adv Ther. 2021;4(6):2100036. https://doi.org/10.1002/adtp.202100036
61. Rostamzadeh F, Jafarinejad-Farsangi S, AnsariAsl Z, et al. Treatment for Myocardial Infarction: In Vivo Evaluation of Curcumin-Loaded PEGylated-GQD Nanoparticles. J Cardiovasc Pharmacol. 2023;81(5):361– 372. https://doi.org/10.1097/FJC.0000000000001410
62. Lei W, Yang J, Wang J, et al. Synergetic EGCG and coenzyme Q10 DSPC liposome nanoparticles protect against myocardial infarction. Biomater Sci. 2023;11(20):6862– 6870. https://doi.org/10.1039/d3bm00857f
63. Liao W, Lin J, Wang W, et al. Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction. Front Pharmacol. 2025;15:1503757. https://doi.org/10.3389/fphar.2024.1503757
64. Li T, Liu X, Yang B, et al. Selenium-loaded porous silica nanospheres improve cardiac repair after myocardial infarction by enhancing antioxidant activity and mitophagy. Free Radic Biol Med. 2025;232:292–305. https://doi.org/10.1016/j.freeradbiomed.2025.03.004
65. Li T, Yang B, Liu X, et al. Silica nanoparticles loaded with selenium quantum dots reduce myocardial ischemia-reperfusion injury by alleviating ferroptosis and mitochondrial dysfunction. Int J Nanomedicine. 2025;20:1843– 1864. https://doi.org/10.2147/IJN.S500810
66. Karpov AA, Ivkin DYu, Dracheva AV, et al. Rat model of post-infarct heart failure by left coronary artery occlusion: technical aspects, functional and morphological assessment. Journal Biomed. 2014;1(3):32–48. (In Russ.)
67. Dong Z, Guo J, Xing X, et al. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother. 2017;89:297– 304. https://doi.org/10.1016/j.biopha.2017.02.029
68. Cheng Y, Liu DZ, Zhang CX, et al. Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia-reperfusion injury through a multistage continuous targeted strategy. Nanomedicine. 2019;16:236– 249. https://doi.org/10.1016/j.nano.2018.12.014
69. Tartuce LP, Brandt FP, Pedroso GS, et al. 2-methoxy-isobutyl-isonitrile-conjugated gold nanoparticles improves redox and inflammatory profile in infarcted rats. Colloids Surf B Biointerfaces. 2020;192:111012. https://doi.org/10.1016/j.colsurfb.2020.111012
70. Zhang Y, Khalique A, Du X, et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv Mater. 2021;33(9):e2006570. https://doi.org/10.1002/adma.202006570
71. Gao J, Song Y, Wang Q, et al. Precisely co-delivery of protein and ROS scavenger with platesomes for enhanced endothelial barrier preservation against myocardial ischemia reperfusion injury. Chem Eng J. 2022;446(2):136960. https://doi.org/10.1016/j.cej.2022.136960
72. Gao F, Zhao Y, Zhang B, et al. Mitochondrial targeted astaxanthin liposomes for myocardial ischemia-reperfusion injury based on oxidative stress. J Biomater Appl. 2022;37(2):303–314. https://doi.org/10.1177/08853282221087102
73. Huang C, Zhou S, Chen C, et al. Biodegradable redox-responsive AIEgen-based-covalent organic framework nanocarriers for long-term treatment of myocardial ischemia/reperfusion injury. Small. 2022;18(47):e2205062. https://doi.org/10.1002/smll.202205062
74. Zhang B, Wang C, Guo M, et al. Circadian rhythm-dependent therapy by composite targeted polyphenol nanoparticles for myocardial ischemia-reperfusion injury. ACS Nano. 2024;18(41):28154–28169. https://doi.org/10.1021/acsnano.4c07690
75. Shi P, Sha Y, Wang X, et al. Targeted delivery and ROS-responsive release of lutein nanoassemblies inhibit myocardial ischemia-reperfusion injury by improving mitochondrial function. Int J Nanomedicine. 2024;19:11973– 11996. https://doi.org/10.2147/IJN.S488532
76. Wang Y, Li S, Li W, et al. Cardiac-targeted and ROS-responsive liposomes containing puerarin for attenuating myocardial ischemia-reperfusion injury. Nanomedicine. 2024;19(28):2335–2355. https://doi.org/10.1080/17435889.2024.2402678
77. Zhu K, Wang K, Zhang R, et al. Iron chelators loaded on myocardiocyte mitochondria-targeted nanozyme system for treating myocardial ischemia-reperfusion injury in mouse models. J Nanobiotechnology. 2025;23(1):112. https://doi.org/10.1186/s12951-025-03197-1
78. Rettie SA, Juergens D, Adebomi V, et al. Accurate de novo design of high-affinity protein-binding macrocycles using deep learning. Nat Chem Biol. 2025. https://doi.org/10.1038/s41589-025-01929-w
Review
For citations:
Cheburkin Yu.V., Smirnov E.A., Murashko E.A., Korolev D.V., Kolobov A.A., Butko D.Yu., Sitkov N.O., Galagudza M.M. Targeted delivery of antioxidants to the myocardium using nanoscale carriers: a modern approach to reducing ischemic-reperfusion injury. Translational Medicine. 2025;12(4):352-372. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-4-352-372. EDN: LWVIOU





















