Preview

Translational Medicine

Advanced search

Possibilities of the T2* relaxometry method in the diagnosis of hypoxia of the fetal brain

https://doi.org/10.18705/2311-4495-2025-12-2-171-181

EDN: DTTWIS

Abstract

The currently existing methods for assessing fetal brain oxygenation are indirect and lead either to underestimation of the clinical situation or, conversely, to excessive obstetric interventions. During hypoxia, the amount of paramagnetic deoxyhemoglobin in tissues increases, so it reduces the T2* relaxation time. This phenomenon opens up the possibility of using T2* as a specific diagnostic marker of brain hypoxia during fetal MRI. This review is devoted to the study of the capabilities of the T2* magnetic resonance relaxometry method in the diagnosis of hypoxic conditions of the fetal brain. The currently available data on T2* of various fetal brain structures and their changes in various pathological conditions are presented. According to the data from the studies presented in this review, T2* relaxation time of fetal brain tissue decreases with gestational age, which is associated with both a physiological decrease in brain oxygenation, especially in the third trimester, and with the natural maturation of tissue during fetal development. Also, a number of studies have observed a noticeable decrease in T2* relaxation time of the fetal brain under various hypoxic conditions.

Fetal MRI is technically challenging due to the small size of the brain, unpredictable fetal movements, and also a number of maternal factors. All researchers indicate a decrease of T2* in the presence of hypoxia. In the review various methods for quickly obtaining and processing T2*-weighted images that are resistant to chaotic fetal movements are considered. The presented material can be used for further development of quantitative T2* relaxometry in prenatal diagnostics.

About the Authors

K. A. Paraskun
International tomography center, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Kseniia A. Paraskun - laboratory assistant of Laboratory of Functional Neuroimaging, International tomography center, Siberian Branch of Russian Academy of Sciences.

Institutskaya str., 3A, Novosibirsk, 630090


Competing Interests:

None



A. A. Savelov
International tomography center, Siberian Branch of Russian Academy of Sciences
Russian Federation

Andrey A. Savelov - Ph.D., Senior Researcher, International tomography center, Siberian Branch of Russian Academy of Sciences.

Novosibirsk


Competing Interests:

None



A. M. Korostyshevskaya
International tomography center, Siberian Branch of Russian Academy of Sciences
Russian Federation

Aleksandra M. Korostyshevskaya - M.D., Leading Researcher, Head of the Department of Medical Diagnostics, International tomography center, Siberian Branch of Russian Academy of Sciences.

Novosibirsk


Competing Interests:

None



References

1. Masselli G, Vaccaro Notte MR, Zacharzewska-Gondek A, et al. Fetal MRI of CNS abnormalities. Clin Radiol. 2020;75(8):640.e1–640.e11. DOI:10.1016/j.crad.2020.03.035.

2. Manganaro L, Capuani S, Gennarini M, et al. Fetal MRI: what’s new? A short review. Eur Radiol Exp. 2023;7(1):41. DOI:10.1186/s41747-023-00358-5.

3. Powers AM, White C, Neuberger I, et al. Fetal MRI Neuroradiology: Indications. Clin Perinatol. 2022;49(3):573–586. DOI:10.1016/j.clp.2022.05.001.

4. Manganaro L, Antonelli A, Bernardo S, et al. Highlights on MRI of the fetal body. Radiol Med. 2018 Apr; 123(4):271–285. DOI:10.1007/s11547-017-0834-7.

5. Hussain NM, O’Halloran M, McDermott B, et al. Fetal monitoring technologies for the detection of intrapartum hypoxia — challenges and opportunities. Biomed Phys Eng Express. 2024;10(2). DOI:10.1088/2057-1976/ad17a6.

6. O’Connor JPB, Robinson SP, Waterton JC. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br J Radiol. 2019;92(1095):20180642. DOI:10.1259/bjr.20180642.

7. Vu C, Chai Y, Coloigner J, et al. Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI. Magn Reson Med. 2021;85(1):168–181. DOI:10.1002/mrm.28422.

8. Sayin ES, Schulman J, Poublanc J, et al. Investigations of hypoxia-induced deoxyhemoglobin as a contrast agent for cerebral perfusion imaging. Hum Brain Mapp. 2023;44(3):1019–1029. DOI:10.1002/hbm.26131.

9. Bottomley PA, Hardy CJ, Argersinger RE, et al. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys. 1987;14(1):1–37. DOI:10.1118/1.596111.

10. Cheng HL, Stikov N, Ghugre NR, et al. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging. 2012;36(4):805–24. DOI:10.1002/jmri.23718.

11. Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009 Sep-Oct;29(5):1433–49. DOI:10.1148/rg.295095034. PMID: 19755604; PMCID: PMC2799958.

12. Cameron IL, Ord VA, Fullerton GD. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn Reson Imaging. 1984;2(2):97–106. DOI:10.1016/0730-725x(84)90063-8.

13. Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol. 2016;594(5):1215–30. DOI:10.1113/JP271099.

14. Prayer D, Brugger PC, Kasprian G, et al. MRI of fetal acquired brain lesions. Eur J Radiol. 2006;57(2):233–49. DOI:10.1016/j.ejrad.2005.11.023.

15. Yusenko SR, Nagorneva SV, Kogan IYu. Changes in fetal cerebral hemodynamics in fetal growth retardation. Rossijskij vestnik akushera-ginekologa=Russian Bulletin of Obstetrician-Gynecologist. 2024;24(3):36–41. In Russian.

16. Lazareva GA, Chebysheva EL. Role of dopplerometric indicators in assessment of fetal cerebral hemodynymics. Sovremennye problemy nauki i obrazovaniya=Modern problems of science and education. 2021;5;123. In Russian.

17. Vasung L, Fischi-Gomez E, Hüppi PS. Multimodality evaluation of the pediatric brain: DTI and its competitors. Pediatr Radiol. 2013;43(1):60–8. DOI:10.1007/s00247-012-2515-y.

18. Vasylechko S, Malamateniou C, Nunes RG, et al. T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method. Magn Reson Med. 2015;73(5):1795–802. DOI:10.1002/mrm.25299.

19. Blazejewska AI, Seshamani S, McKown SK, et al. 3D in utero quantification of T2* relaxation times in human fetal brain tissues for age optimized structural and functional MRI. Magn Reson Med. 2017;78(3):909–916. DOI:10.1002/mrm.26471.

20. Baadsgaard K, Hansen DN, Peters DA, et al. T2* weighted fetal MRI and the correlation with placental dysfunction. Placenta. 2023;131:90–97. DOI:10.1016/j.placenta.2022.12.002.

21. Lauridsen MH, Uldbjerg N, Henriksen TB, et al. Cerebral Oxygenation Measurements by Magnetic Resonance Imaging in Fetuses With and Without Heart Defects.CircCardiovascImaging.2017;10(11):e006459. DOI:10.1161/CIRCIMAGING.117.006459.

22. Peyvandi S, Xu D, Wang Y, et al. Fetal Cerebral Oxygenation Is Impaired in Congenital Heart Disease and Shows Variable Response to Maternal Hyperoxia. J Am Heart Assoc. 2021;10(1):e018777. DOI:10.1161/JAHA.120.018777.

23. Cromb D, Steinweg J, Aviles Verdera J, et al. T2*-Relaxometry MRI to Assess Third Trimester Placental and Fetal Brain Oxygenation and Placental Characteristics in Healthy Fetuses and Fetuses With Congenital Heart Disease. J Magn Reson Imaging. 2024. DOI:10.1002/jmri.29498.

24. Aviles Verdera J, Story L, Hall M, et al. Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy. Radiology. 2023;309(1):e223050. DOI:10.1148/radiol.223050.

25. Payette K, Uus AU, Kollstad E, et al. T2* relaxometry of fetal brain structures using low-field (0.55T) MRI. Magn Reson Med. 2024;1–12. DOI:10.1002/mrm.30409.

26. Malamateniou C, Malik SJ, Counsell SJ, et al. Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol. 2013;34(6):1124–36. DOI:10.3174/ajnr.A3128.

27. Ciceri T, Casartelli L, Montano F, et al. Fetal brain MRI atlases and datasets: A review. Neuroimage. 2024 Apr 15; 292:120603. DOI:10.1016/j.neuroimage.2024.120603.

28. Péran P, Hagberg G, Luccichenti G, et al. Voxel-based analysis of R2* maps in the healthy human brain. J Magn Reson Imaging. 2007;26(6):1413–20. DOI:10.1002/jmri.21204.

29. Uus AU, et al. Combined Quantitative T2* Map and Structural T2-Weighted Tissue-Specific Analysis for Fetal Brain MRI: Pilot Automated Pipeline. In: Link-Sourani D, Abaci Turk E, Macgowan C, et al. (eds). Perinatal, Preterm and Paediatric Image Analysis. PIPPI 2023. Lecture Notes in Computer Science. 2023. Vol. 14246. Springer, Cham. DOI:10.1007/978-3-031-45544-5_3.


Review

For citations:


Paraskun K.A., Savelov A.A., Korostyshevskaya A.M. Possibilities of the T2* relaxometry method in the diagnosis of hypoxia of the fetal brain. Translational Medicine. 2025;12(2):171-181. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-2-171-181. EDN: DTTWIS

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)