Preview

Трансляционная медицина

Расширенный поиск

Роль взаимодействия остеобластов и остеоцитов в условиях in vivo и в ходе процесса остеодифференцировки in vitro в ключе дальнейших перспектив применения для целей регенеративной медицины

https://doi.org/10.18705/2311-4495-2024-11-6-532-545

EDN: TSJMCP

Аннотация

Заболевания, ассоциированные с нарушением гомеостаза костной ткани, включая остеопороз, находятся среди патологий, которые лидируют по уровню летальности. Разработка и внедрение подходов тканевой инженерии, основанных на применении мезенхимных стволовых клеток, обещают стать высокоэффективным методом их терапии. Однако фундаментальные молекулярно-клеточные механизмы, нарушение которых приводит к развитию заболеваний костной ткани, требуют дополнительных исследований. Взаимодействия между остеобластами и остеоцитами костной ткани, несомненно, играют важную роль в поддержании баланса между процессами формирования кости и вовлечены в патогенез заболеваний костной ткани. Для более углубленного понимания различных аспектов этих взаимодействий необходима репрезентативная модель. Использование клеточных культур человека в качестве составной части такой модели более точно отображает физиологические нюансы, в отличие от клеточных культур, полученных из тканей модельных животных. Возможность создания систем совместного культивирования остеобластов и остеоцитов, полученных из мезенхимных стволовых клеток человека, и их применение в контексте трансляционной медицины находятся в фокусе внимания авторов настоящего обзора.

Об авторах

А. А. Ковалева
Федеральное государственное бюджетное учреждение науки «Институт цитологии Российской академии наук»
Россия

Ковалева Анастасия Андреевна - старший лаборант-исследователь лаборатории молекулярной медицины, ФГБУН ИНЦ РАН.

Тихорецкий пр., д. 4, Санкт-Петербург, 194064


Конфликт интересов:

Нет



О. А. Краснова
Федеральное государственное бюджетное учреждение науки «Институт цитологии Российской академии наук»
Россия

Краснова Ольга Александровна - младший научный сотрудник лаборатории молекулярной медицины, ФГБУН ИНЦ РАН.

Санкт-Петербург


Конфликт интересов:

Нет



И. Э. Неганова
Федеральное государственное бюджетное учреждение науки «Институт цитологии Российской академии наук»
Россия

Неганова Ирина Эриковна - к.б.н., заведующий лабораторией молекулярной медицины, ФГБУН ИНЦ РАН.

Санкт-Петербург


Конфликт интересов:

Нет



Список литературы

1. Zhivodernikov IV, Kirichenko TV, Markina YV, et al. Molecular and Cellular Mechanisms of Osteoporosis. Int J Mol Sci. 2023;24(21). DOI: 10.3390/ijms242115772.

2. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–27. DOI: 10.1177/0004563218759371.

3. Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep. 2023;19(6):1635–1658. DOI: 10.1007/s12015-023-10558-6.

4. Ding P, Gao C, Gao Y, et al. Osteocytes regulate senescence of bone and bone marrow. Elife. 2022;11. DOI: 10.7554/eLife.81480.

5. Stains JP, Watkins MP, Grimston SK, et al. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int. 2013;94(1):55–67. DOI: 10.1007/s00223-013-9742-6.

6. Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/ beta-catenin signaling in bone. Proc Natl Acad Sci U S A. 2015;112(5):E478–86. DOI: 10.1073/pnas.1409857112

7. Rhee Y, Lee EY, Lezcano V, et al. Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes. J Biol Chem. 2013;288(41):29809–20. DOI: 10.1074/jbc.M113.485938.

8. Chen Y, Xiao H, Liu Z, et al. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules. 2024;14(8). DOI: 10.3390/biom14080970.

9. Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39(1):19–26. DOI: 10.1007/s00774-020-01162-6.

10. Breathwaite E, Weaver J, Odanga J, et al. 3D Bioprinted Osteogenic Tissue Models for In Vitro Drug Screening. Molecules. 2020;25(15). DOI: 10.3390/molecules25153442.

11. Chen J, Liu D, Chen B, et al. The histone acetyltransferase Mof regulates Runx2 and Osterix for osteoblast differentiation. Cell Tissue Res. 2023;393(2):265–279. DOI: 10.1007/s00441-023-03791-5.

12. Riancho JA, Delgado-Calle J. [Osteoblast-osteoclast interaction mechanisms]. Reumatol Clin. 2011;7 Suppl 2:S1–4. DOI: 10.1016/j.reuma.2011.03.003.

13. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res. 2013;92(10):860–7. DOI: 10.1177/0022034513500306.

14. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of BoneTissue: Structure, Function, and FactorsThat Influence Bone Cells. Biomed Res Int. 2015;2015:421746. DOI: 10.1155/2015/421746.

15. Sims NA, Vrahnas C. Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys. 2014;561:22–8. DOI: 10.1016/j.abb.2014.05.015.

16. Kitase Y, Prideaux M. Targeting osteocytes vs osteoblasts. Bone. 2023;170:116724. DOI: 10.1016/j.bone.2023.116724.

17. Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 2014;28:269–286. DOI: 10.22203/ecm.v028a19.

18. Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys. 2014;561:3–12. DOI: 10.1016/j.abb.2014.05.003.

19. Ponzetti M, Rucci N. Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. Int J Mol Sci. 2021;22(13). DOI: 10.3390/ijms22136651.

20. Heng BC, Cao T, Stanton LW, et al. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res. 2004;19(9):1379–1394. DOI: 10.1359/JBMR.040714.

21. Valdoz JC, Johnson BC, Jacobs DJ, et al. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci. 2021;22(23):12690. DOI: 10.3390/ijms222312690.

22. Xing Q, Qian Z, Kannan B, et al. Osteogenic Differentiation Evaluation of an Engineered Extracellular Matrix Based Tissue Sheet for Potential Periosteum Replacement.ACSApplMaterInterfaces.2015;7(41):23239–47. DOI: 10.1021/acsami.5b07386.

23. Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001;11(4):173–186. DOI: 10.1159/000047804.

24. Zhang M, Dai GC, Zhang YW, et al. Enhancing osteogenic differentiation of diabetic tendon stem/ progenitor cells through hyperoxia: Unveiling ROS/HIF-1alpha signalling axis. J Cell Mol Med. 2024;28(20):e70127. DOI: 10.1111/jcmm.70127.

25. Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol. 2022;10:836764. DOI:10.3389/fbioe.2022.836764.

26. Lim KT, Hexiu J, Kim J, et al. Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int. 2014;2014:316803. DOI: 10.1155/2014/316803.

27. Lim K, Kim J, Seonwoo H, et al. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. Biomed Res Int. 2013;2013:269724. DOI: 10.1155/2013/269724.

28. Tangporncharoen R, Silathapanasakul A, Tragoonlugkana P, et al. The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis. J Orthop Surg Res. 2024;19(1):255. DOI: 10.1186/s13018-024-04747-3.

29. Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. DOI: 10.1038/s41392-022-00932-0.

30. Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int. 2021;2021:9919361. DOI: 10.1155/2021/9919361.

31. Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:117. DOI: 10.1186/scrt328.

32. Lyu LX, Zhang XF, Deegan AJ, et al. Comparing hydroxyapatite with osteogenic medium for the osteogenic differentiation of mesenchymal stem cells on PHBV nanofibrous scaffolds. J Biomater Sci Polym Ed. 2019;30(2):150–161. DOI: 10.1080/09205063.2018.1558485.

33. Wang L, Li ZY, Wang YP, et al. Dynamic Expression Profiles of Marker Genes in Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells. Chin Med Sci J. 2015;30(2):108–113. DOI: 10.1016/s1001-9294(15)30021-3.

34. Kostina D, Lobov A, Klausen P, et al. Isolation of Human Osteoblast Cells Capable for Mineralization and Synthetizing Bone-Related Proteins In Vitro from Adult Bone. Cells. 2022;11(21):3356. DOI: 10.3390/cells11213356.

35. Choi KM, Seo YK, Yoon HH, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng. 2008;105(6):586–594. DOI: 10.1263/jbb.105.586.

36. Porter RM, Huckle WR, Goldstein AS. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J Cell Biochem. 2003;90(1):13–22. DOI: 10.1002/jcb.10592.

37. Fiorentini E, Granchi D, Leonardi E, et al. Effects of osteogenic differentiation inducers on in vitro expanded adult mesenchymal stromal cells. Int J Artif Organs. 2011;34(10):998–1011. DOI: 10.5301/ijao.5000001.

38. Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13(9):1738–1755. DOI: 10.1002/term.2914.

39. Pino AM, Rosen CJ, Rodriguez JP. In osteoporosis, differentiation of mesenchymal stem cells (MSCs) improves bone marrow adipogenesis. Biol Res. 2012;45(3):279–287. DOI: 10.4067/S0716-97602012000300009.

40. PrallWC, Haasters F, Heggebo J, et al. Mesenchymal stem cells from osteoporotic patients feature impaired signal transduction but sustained osteoinduction in response to BMP-2 stimulation. Biochem Biophys Res Commun. 2013;440(4):617–622. DOI: 10.1016/j.bbrc.2013.09.114.

41. Lin H, Sohn J, Shen H, et al. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019;203:96–110. DOI: 10.1016/j.biomaterials.2018.06.026.

42. Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. DOI: 10.1038/s41413-020-0099-y.

43. Delgado-Calle J, Bellido T. The osteocyte as a signaling cell. Physiol Rev. 2022;102(1):379–410. DOI: 10.1152/physrev.00043.2020.

44. Hart NH, Newton RU, Tan J, et al. Biological basis of bone strength: anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020;20(3):347–71. http://www.ismni.org/jmni/pdf/81/jmni_20_347.pdf

45. Marahleh A, Kitaura H, Ohori F, et al. The osteocyte and its osteoclastogenic potential. Front Endocrinol (Lausanne). 2023;14:1121727. DOI: 10.3389/fendo.2023.1121727.

46. Palander A, Fauch L, Turunen MJ, et al. Molecular Quantity Variations in Human-Mandibular-Bone Osteoid. Calcif Tissue Int. 2022;111(6):547–558. DOI: 10.1007/s00223-022-01017-4.

47. Sanchez-de-Diego C, Artigas N, Pimenta-Lopes C, et al. Glucose Restriction Promotes Osteocyte Specification by Activating a PGC-1alpha-Dependent Transcriptional Program. iScience. 2019;15:79–94. DOI: 10.1016/j.isci.2019.04.015.

48. Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One. 2012;7(5):e36786. DOI: 10.1371/journal.pone.0036786.

49. Donmez BO, Karagur ER, Donmez AC, et al. Calciumdependent activation of PHEX, MEPE and DMP1 in osteocytes. Mol Med Rep. 2022;26(6):359. DOI: 10.3892/mmr.2022.12876.

50. Dussold C, Gerber C, White S, et al. DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res. 2019;7:12. DOI: 10.1038/s41413-019-0051-1.

51. Verbruggen SW. Role of the osteocyte in bone metastasis – The importance of networking. J Bone Oncol. 2024;44:100526. DOI: 10.1016/j.jbo.2024.100526.

52. Choi JUA, Kijas AW, Lauko J, Rowan AE. The Mechanosensory Role of Osteocytes and Implications for Bone Health and Disease States. Front Cell Dev Biol. 2022;9:770143. DOI: 10.3389/fcell.2021.770143.

53. Bernhardt A, Skottke J, von Witzleben M, Gelinsky M. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Int J Mol Sci. 2021;22(14) :7316. DOI: 10.3390/ijms22147316.

54. van der Plas A, Aarden EM, Feijen JH, et al. Characteristics and properties of osteocytes in culture. J Bone Miner Res. 1994;9(11):1697–1704. DOI: 10.1002/jbmr.5650091105.

55. Nasello G, Alaman-Diez P, Schiavi J, et al. Primary Human Osteoblasts Cultured in a 3D Microenvironment Create a Unique Representative Model of Their Differentiation Into Osteocytes. Front Bioeng Biotechnol. 2020;8:336. DOI: 10.3389/fbioe.2020.00336.

56. Kim J, Adachi T. Cell-fate decision of mesenchymal stem cells toward osteocyte differentiation is committed by spheroid culture. Sci Rep. 2021;11(1):13204. DOI: 10.1038/s41598-021-92607-z.

57. Kim J, Adachi T. Cell Condensation Triggers the Differentiation of Osteoblast Precursor Cells to Osteocyte-Like Cells. Front Bioeng Biotechnol. 2019;7:288. DOI: 10.3389/fbioe.2019.00288.

58. Shah KM, Stern MM, Stern AR, et al. Osteocyte isolation and culture methods. Bonekey Rep. 2016;5:838. DOI: 10.1038/bonekey.2016.65.

59. Mc Garrigle MJ, Mullen CA, Haugh MG, et al. Osteocyte differentiation and the formation of an interconnected cellular network in vitro. Eur Cell Mater. 2016;31:323–340. DOI: 10.22203/ecm.v031a21.

60. Greggi C, Cariati I, Onorato F, et al. PTX3 Effects on Osteogenic Differentiation in Osteoporosis: An In Vitro Study. Int J Mol Sci. 2021;22(11):5944. DOI: 10.3390/ijms22115944.

61. Skottke J, Gelinsky M, Bernhardt A. In Vitro Co-culture Model of Primary Human Osteoblasts and Osteocytes in Collagen Gels. Int J Mol Sci. 2019;20(8):1998. DOI: 10.3390/ijms20081998.

62. Yvanoff C, Willaert RG. Development of bone cell microarrays in microfluidic chips for studying osteocyte-osteoblast communication under fluid flow mechanical loading. Biofabrication. 2022;14(2). DOI: 10.1088/1758-5090/ac516e.

63. Zhou YH, Guo Y, Zhu JY, et al. Spheroid co-culture of BMSCs with osteocytes yields ring-shaped bone-like tissue that enhances alveolar bone regeneration. Sci Rep. 2022;12(1):14636. DOI: 10.1038/s41598-022-18675-x.

64. Vazquez M, Evans BA, Riccardi D, et al. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Front Endocrinol (Lausanne). 2014;5:208. DOI: 10.3389/fendo.2014.00208.

65. Wirsig K, Kilian D, von Witzleben M, et al. Impact of Sr(2+) and hypoxia on 3D triple cultures of primary human osteoblasts, osteocytes and osteoclasts. Eur J Cell Biol. 2022;101(3):151256. DOI: 10.1016/j.ejcb.2022.151256.

66. Wirsig K, Bacova J, Richter RF, et al. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio. 2024;25:101006. DOI: 10.1016/j.mtbio.2024.101006.

67. Remmers SJA, de Wildt BWM, Vis MAM, et al. Osteoblast-osteoclast co-cultures: A systematic review and map of available literature. PLoS One. 2021;16(11):e0257724. DOI: 10.1371/journal.pone.0257724.

68. Lambertini E, Penolazzi L, Pandolfi A, et al. Human osteoclasts/osteoblasts 3D dynamic coculture system to study the beneficial effects of glucosamine on bone microenvironment. Int J Mol Med. 2021;47(4):57. DOI: 10.3892/ijmm.2021.4890.

69. Zhu S, Haussling V, Aspera-Werz RH, et al. Bisphosphonates Reduce Smoking-Induced Osteoporotic-Like Alterations by Regulating RANKL/OPG in an Osteoblast and Osteoclast Co-Culture Model. Int J Mol Sci. 2020;22(1):53. DOI: 10.3390/ijms22010053.

70. Sieberath A, Della Bella E, Ferreira AM, et al. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int J Mol Sci. 2020;21(3):912. DOI: 10.3390/ijms21030912.

71. XieC,LiangR,YeJ,etal.High-efficientengineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. DOI: 10.1016/j.biomaterials.2022.121741.

72. Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. Tissue Eng Part B Rev. 2018;24(2):155–169. DOI: 10.1089/ten.TEB.2017.0305.

73. Shanbhag S, Kampleitner C, Al-Sharabi N, et al. Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects. Cells. 2023;12(5):767. DOI: 10.3390/cells12050767.

74. Conrad B, Yang F. Hydroxyapatite-coated gelatin microribbon scaffolds induce rapid endogenous cranial bone regeneration in vivo. Biomater Adv. 2022;140:213050. DOI: 10.1016/j.bioadv.2022.213050.

75. Arjmand B, Sarvari M, Alavi-Moghadam S, et al. Prospect of Stem Cell Therapy and Regenerative Medicine in Osteoporosis. Front Endocrinol (Lausanne). 2020;11:430. DOI: 10.3389/fendo.2020.00430.

76. Phetfong J, Sanvoranart T, Nartprayut K, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12. DOI: 10.1186/s11658-016-0013-1.

77. Theodosaki AM, Tzemi M, Galanis N, et al. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev Rep. 2024;20(4):938–966. DOI: 10.1007/s12015-024-10696-5.

78. Ansari S, Ito K, Hofmann S. Cell Sources for Human In vitro Bone Models. Curr Osteoporos Rep. 2021;19(1):88–100. DOI: 10.1007/s11914-020-00648-6.

79. Fong ELS, Toh TB, Yu H, Chow EK. 3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technol. 2017;22(3):245–253. DOI: 10.1177/2472630317697251.

80. Rodriguez JP, Rios S, Fernandez M, Santibanez JF. Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. J Cell Biochem. 2004;92(4):745–754. DOI: 10.1002/jcb.20119.


Рецензия

Для цитирования:


Ковалева А.А., Краснова О.А., Неганова И.Э. Роль взаимодействия остеобластов и остеоцитов в условиях in vivo и в ходе процесса остеодифференцировки in vitro в ключе дальнейших перспектив применения для целей регенеративной медицины. Трансляционная медицина. 2024;11(6):532-545. https://doi.org/10.18705/2311-4495-2024-11-6-532-545. EDN: TSJMCP

For citation:


Kovaleva A.A., Krasnova O.A., Neganova I.E. The role of the interaction of osteoblasts and osteocytes in vivo and during the process of osteodifferentiation in vitro in the key of further prospects of application for the purposes of regenerative medicine. Translational Medicine. 2024;11(6):532-545. (In Russ.) https://doi.org/10.18705/2311-4495-2024-11-6-532-545. EDN: TSJMCP

Просмотров: 158


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)