Preview

Translational Medicine

Advanced search

Hematopoietic stem cell homing: biology and clinical prospectives

https://doi.org/10.18705/2311-4495-2025-12-4-373-386

EDN: KZFHHA

Abstract

The hematopoietic stem cell (HSC) niche is a specific microenvironment in the bone marrow that maintains the ability of HSCs to differentiate and self-renew. It comprises two interconnected sub-niches: the vascular and the intraosseous. This distinction is particularly relevant in the context of homing, as hematopoietic stem cells sequentially interact with both niches during the engraftment process. The components of the bone marrow niche are divided into cellular and extracellular elements. All of them are crucial for maintaining niche homeostasis and, consequently, are essential for the success of HSC transplantation and subsequent engraftment.
Homing is the process of active migration of hematopoietic stem cells into the bone marrow, which occurs during bone marrow transplantation — a common treatment for hematopoietic tissue tumors. However, a significant proportion of the transplanted cells fail to reach their niche, leading to various side effects and complications of this procedure. Currently, there is active research focused on improving the efficacy of HSC transplantation. The approaches under investigation include both methods to directly enhance cell migration and strategies to preemptively increase the number of transplantable hematopoietic stem cells. Homing itself is a key target for new technologies, as improving its efficiency can reduce the time required for blood cell recovery after transplantation. Advancements in this field have the potential to transform current HSC transplantation practices and significantly increase patient survival rates following the procedure.

About the Authors

D. A. Protasov
Almazov National Medical Research Centre
Russian Federation

Dmitry A. Protasov, Student in Institute of medical Education 

Saint Petersburg 


Competing Interests:

The authors declare no conflict of interest.



P. A. Butylin
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Russian Federation

Pavel A. Butylin, PhD, Associate professor in Institute of medical Education

Akkuratova str., 2, Saint Petersburg, 197341 


Competing Interests:

The authors declare no conflict of interest.



References

1. Sugimura R. The significance and application of vascular niche in the development and maintenance of hematopoietic stem cells. International journal of hematology. 2018;107(6):642–645. https://doi.org/10.1007/s12185-018-2450-2

2. Schleicher WE, Hoag B, De Dominici M, et al. CHIP: a clonal odyssey of the bone marrow niche. The Journal of clinical investigation. 2024;134(15):e180068. https://doi.org/10.1172/JCI180068

3. Sánchez-Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: classic and novel strategies to uncover niche composition. British journal of haematology. 2022;199(5):647–664. https://doi.org/10.1111/bjh.18355

4. Zanetti C, Krause DS. «Caught in the net»: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Experimental hematology. 2020;89:13– 25. https://doi.org/10.1016/j.exphem.2020.07.010

5. Aerts-Kaya F, Ulum B, Mammadova A, et al. Neurological regulation of the bone marrow niche. Advances in experimental medicine and biology. 2020;1212:127–153. https://doi.org/10.1007/5584_2019_398

6. Okada K, Nishioka M, Kaji H. Roles of fibrinolytic factors in the alterations in bone marrow hematopoietic stem/progenitor cells during bone repair. Inflammation and regeneration. 2020;40:22. https://doi.org/10.1186/s41232-020-00128-5

7. Ding P, Gao C, Gao Y, et al. Osteocytes regulate senescence of bone and bone marrow. eLife. 2022;11:e81480. https://doi.org/10.7554/eLife.81480

8. Busch C, Nyamondo K, Wheadon H. Complexities of modeling the bone marrow microenvironment to facilitate hematopoietic research. Experimental hematology. 2024;135:104233. https://doi.org/10.1016/j.exphem.2024.104233

9. Sato M, Asada N, Kawano Y, et al. Osteocytes regulate primary lymphoid organs and fat metabolism. Cell Metab. 2013;18(5):749–58. https://doi.org/10.1016/j.cmet.2013.09.014

10. Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14(16):1581–93. https://doi.org/10.2174/138161208784705469

11. Yu VW, Scadden DT. Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol. 2016;118:21–44. https://doi.org/10.1016/bs.ctdb.2016.01.009

12. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–988. https://doi.org/10.1016/j.immuni.2006.10.016

13. Omatsu Y, Sugiyama T, Kohara H, et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387– 99. https://doi.org/10.1016/j.immuni.2010.08.017

14. Pinho S, Lacombe J, Hanoun M, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7):1351–1367. https://doi.org/10.1084/jem.20122252

15. Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self-renewal and chemoresistance. Nat Med. 2012;18(11): 1651–1657. https://doi.org/10.1038/nm.2969

16. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–973. https://doi.org/10.1038/nature03703

17. Kobayashi H, Butler JM, O’Donnell R, et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol. 2010;12(11):1046–1056. https://doi.org/10.1038/ncb2108

18. Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460(7252):259–263. https://doi.org/10.1038/nature08099

19. Trottier MD, Naaz A, Li Y, Fraker PJ. Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proc Natl Acad Sci USA. 2012;109(20):7622–7629. https://doi.org/10.1073/pnas.1205129109

20. Ludin A, Itkin T, Gur-Cohen S, et al. Monocytesmacrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13(11):1072–1082. https://doi.org/10.1038/ni.2408

21. Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol. 2022;103(2):34–43. https://doi.org/10.1111/iep.12428

22. Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature. 1991;352(6334):438–441. https://doi.org/10.1038/352438a0

23. Morra L, Moch H. Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Arch. 2011;459(5):465–475. https://doi.org/10.1007/s00428-011-1151-5

24. Khurana S, Schouteden S, Manesia JK, et al. Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun. 2016;7: 13500. https://doi.org/10.1038/ncomms13500

25. Verma D, Kumar R, Pereira RS, et al. Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis. Blood. 2019;134(3):227–238. https://doi.org/10.1182/blood.2018874214

26. Itkin T, Gur-Cohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532(7599):323–328. https://doi.org/10.1038/nature17624

27. Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294(5548):1933–1936. https://doi.org/10.1126/science.1064081

28. Cao TM, Mitchell MJ, Liesveld J, King MR. Stem cell enrichment with selectin receptors: mimicking the pH environment of trauma. Sensors. 2013;13(9):12516–12526. https://doi.org/10.3390/s130912516

29. Schweitzer KM, Dräger AM, van der Valk P, Thijsen SF, Zevenbergen A, Theijsmeijer AP, van der Schoot CE, Langenhuijsen MM. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol. 1996;148(1):165-175.

30. Nabors LK, Wang LD, Wagers AJ, Kansas GS. Overlapping roles for endothelial selectins in murine hematopoietic stem/progenitor cell homing to bone marrow. Exp Hematol. 2013;41(7):588–596. https://doi.org/10.1016/j.exphem.2013.02.014.

31. Bonig H, Priestley GV, Papayannopoulou T. Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood. 2006;107(1):79– 86. https://doi.org/10.1182/blood-2005-05-2023

32. Rademakers T, Goedhart M, Hoogenboezem M, et al. Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica. 2020;105(12):2746–2756. https://doi.org/10.3324/haematol.2018.196329

33. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901–1910. https://doi.org/10.1182/blood-2005-04-1417

34. Grenier JMP, Testut C, Fauriat C, et al. Adhesion molecules involved in stem cell niche retention during normal haematopoiesis and in acute myeloid leukaemia. Front Immunol. 2021;12:756231. https://doi.org/10.3389/fimmu.2021.756231

35. Hasan T, Pasala AR, Hassan D, et al. Homing and engraftment of hematopoietic stem cells following transplantation: a pre-clinical perspective. Curr Oncol. 2024;31(2):603– 616. https://doi.org/10.3390/curroncol31020044

36. Gao J, Li Y, Lu S, et al. Enhanced in vivo motility of human umbilical cord blood hematopoietic stem/ progenitor cells introduced via intra-bone marrow injection into xenotransplanted NOD/SCID mouse. Exp Hematol. 2009;37(8):990–997. https://doi.org/10.1016/j.exphem.2009.05.006

37. Okada M, Yoshihara S, Taniguchi K, et al. Intrabone marrow transplantation of unwashed cord blood using reduced-intensity conditioning treatment: a phase I study. BiolBlood Marrow Transplant. 2012;18(4):633–639. https://doi.org/10.1016/j.bbmt.2011.08.010

38. Frassoni F, Gualandi F, Podestà M, et al. Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. The Lancet. Oncology. 2008;9(9): 831–839. https://doi.org/10.1016/S1470-2045(08)70180-3

39. Juopperi TA, Schuler W, Yuan X, et al. Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol. 2007;35(2):335–341. https://doi.org/10.1016/j.exphem.2006.09.014

40. Lemieux ME, Eaves CJ. Identification of properties that can distinguish primitive populations of stromalcell-responsive lympho-myeloid cells from cells that are stromal-cell-responsive but lymphoid-restricted and cells that have lympho-myeloid potential but are also capable of competitively repopulating myeloablated recipients. Blood. 1996;88(5):1639–1648.

41. Kasow KA, Sims-Poston L, Eldridge P, Hale GA. CD34(+) hematopoietic progenitor cell selection of bone marrow grafts for autologous transplantation in pediatric patients. Biol Blood Marrow Transplant. 2007;13(5):608–614. https://doi.org/10.1016/j.bbmt.2007.01.074

42. Lehnertz B, Chagraoui J, MacRae T, et al. HLF expression defines the human hematopoietic stem cell state. Blood. 2021;138(25):2642–2654. https://doi.org/10.1182/blood.2021010745

43. Tajer P, Pike-Overzet K, Arias S, et al. Ex vivo expansion of hematopoietic stem cells for therapeutic purposes: lessons from development and the niche. Cells. 2019;8(2):169. https://doi.org/10.3390/cells8020169

44. Rossmanith T, Schröder B, Bug G, et al. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of scid repopulating cells. Stem Cells. 2001;19(4):313– 320. https://doi.org/10.1634/stemcells.19-4-313

45. Chaurasia P, Gajzer DC, Schaniel C, et al. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest. 2014;124(6):2378–2395. https://doi.org/10.1172/JCI70313

46. Fares I, Chagraoui J, Gareau Y, et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345(6203):1509– 1512. https://doi.org/10.1126/science.1256337

47. Saiyin T, Kirkham AM, Bailey AJ, et al. Clinical outcomes of umbilical cord blood transplantation using ex vivo expansion: a systematic review and meta-analysis of controlled studies. Transplantation and cellular therapy. 2023;29(2):1–9. https://doi.org/10.1016/j.jtct.2022.11.007

48. Mantel CR, O’Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161(7):1553–1565. https://doi.org/10.1016/j.cell.2015.04.054

49. Papa L, Djedaini M, Hoffman R. Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann N Y Acad Sci. 2020;1466(1):39–50. https://doi.org/10.1111/nyas.14133

50. Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol. 2019;109(1):18– 27. https://doi.org/10.1007/s12185-018-2534-z

51. Capitano ML, Hangoc G, Cooper S, Broxmeyer HE. Mild heat treatment primes human CD34(+) cord blood cells for migration toward SDF-1α and enhances engraftment in an NSG mouse model. Stem Cells. 2015;33(6):1975–1984. https://doi.org/10.1002/stem.1988

52. Iwanaga T, Nio-Kobayashi J. Cellular expression of CD26/dipeptidyl peptidase IV. Biomed Res. 2021;42(6):229– 237. https://doi.org/10.2220/biomedres.42.229

53. Elmansi AM, Eisa NH, Periyasamy-Thandavan S, et al. DPP4-truncated CXCL12 alters CXCR4/ACKR3 signaling, osteogenic cell differentiation, migration, and senescence. ACS Pharmacol Transl Sci. 2022;6(1):22–39. https://doi.org/10.1021/acsptsci.2c00040

54. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000– 1003. https://doi.org/10.1126/science.1097071

55. Farag SS, Nelson R, Cairo MS, et al. High-dose sitagliptin for systemic inhibition of dipeptidylpeptidase-4 to enhance engraftment of single cord umbilical cord blood transplantation. Oncotarget. 2017;8(66):110350–110357. https://doi.org/10.18632/oncotarget.22739

56. Wang Y, Lai S, Tang J, et al. Prostaglandin E2 promotes human CD34+ cells homing through EP2 and EP4 in vitro. Mol Med Rep. 2017;16(1):639–646. https://doi.org/10.3892/mmr.2017.6649

57. Hoggatt J, Mohammad KS, Singh P, Pelus LM. Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Blood. 2013;122(17):2997–3000. https://doi.org/10.1182/blood-2013-07-515288

58. Cutler C, Multani P, Robbins D, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood. 2013;122(17):3074–3081. https://doi.org/10.1182/blood-2013-05-503177

59. Li T, Luo C, Zhang J, et al. Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12(1):246. https://doi.org/10.1186/s13287-021-02304-x

60. Hansen M, Stahl L, Heider A, et al. Reduction of graft-versus-host-disease in NOD. Cg-Prkdcscid Il2rgtm- 1Wjl/SzJ (NSG) mice by cotransplantation of syngeneic human umbilical cord-derived mesenchymal stromal cells. Transplantation and cellular therapy. 2021;27(8):1–10. https://doi.org/10.1016/j.jtct.2021.04.018

61. Wu KH, Sheu JN, Wu HP, et al. Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study. Transplantation. 2013;95(5):773–777. https://doi.org/10.1097/TP.0b013e31827a93dd

62. Chan CK, Wu KH, Lee YS, et al. The comparison of interleukin 6-associated immunosuppressive effects of human ESCs, fetal-type MSCs, and adult-type MSCs. Transplantation. 2012;94(2):132–138. https://doi.org/10.1097/TP.0b013e31825940a4


Review

For citations:


Protasov D.A., Butylin P.A. Hematopoietic stem cell homing: biology and clinical prospectives. Translational Medicine. 2025;12(4):373-386. (In Russ.) https://doi.org/10.18705/2311-4495-2025-12-4-373-386. EDN: KZFHHA

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-4495 (Print)
ISSN 2410-5155 (Online)